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Announcements & Agenda

• HW3 is due today at 5PM

• Phase Noise Definition and Impact
• Ideal Oscillator Phase Noise
• Leeson Model
• Hajimiri Model
• Phasor-Based Phase Noise Analysis

• VCO phase noise and jitter papers are posted 
on the website
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Phase Noise Definition

• An ideal oscillator has an impulse shape in the frequency domain
• A real oscillator has phase noise “skirts” centered at the carrier frequency
• Phase noise is quantified as the normalized noise power in a 1Hz 

bandwidth at a frequency offset ∆ω from the carrier
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Phase Noise Impact in RF Communication

• At the RX, a large interferer can degrade the 
SNR of the wanted signal due to “reciprocal 
mixing” caused by the LO phase noise

• Having large phase noise at the TX can degrade 
the performance of a nearby RX

RX Reciprocal Mixing Strong Noisy TX Interfering with RX
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Jitter Impact in HS Links

• RX sample clock jitter reduces the timing margin 
of the system for a given bit-error-rate

• TX jitter also reduces timing margin, and can be 
amplified by low-pass channels
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Ideal Oscillator Phase Noise
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Tank Impedance Near Resonance
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Ideal Oscillator Phase Noise
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• Phase noise improves as both the carrier power and Q increase
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Other Phase Noise Sources

• Tank thermal noise is only one piece of the 
phase noise puzzle

• Oscillator transistors introduce their own thermal 
noise and also flicker (1/f) noise

[Perrott]
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Leeson Phase Noise Model

• Leeson’s model modifies the 
previously derived expression to 
account for the high frequency 
noise floor and 1/f noise 
upconversion

• A empirical fitting parameter F is 
introduced to account for 
increased thermal noise

• Model predicts that the (1/∆ω)3

region boundary is equal to the 
1/f corner of device noise and 
the oscillator noise flattens at 
half the resonator bandwidth
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11 ELEN620-IC Design of Broadband Communication circuit

A 3.5GHz LC tank VCO Phase 
Noise

Measure
Phase
noise

-30dB/decade
-20dB/decade

-105dBc



12 ELEN620-IC Design of Broadband Communication circuit

RBW=10K

PN=-85dBm-(-20dBm)-
10log10(10e3)

=-105dBc

VCO Output Spectrum Example

-85dBm

-20dBm

dBc---in dB 
with respect to 
carrier

Make sure to account for 
the spectrum analyzer 
resolution bandwidth



Leeson Model Issues

• The empirical fitting 
parameter F is not known 
in advance and can vary 
with different process 
technologies and 
oscillator topologies

• The actual transition 
frequencies predicted by 
the Leeson model does 
not always match 
measured data 
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YCLO
AMSC-TAMU 14

Harjimiri’s Model (T. H. Lee)
 Injection at Peak (amplitude noise only)

 Injection at Zero Crossing (maximum phase noise)



15 ELEN620-IC Design of Broadband Communication circuit

A time-Varying Phase Noise model: Hajimiri-Lee model

Impulse applied to the tank to measure its sensitivity 
function

The impulse response for the phase variation can be represented as 

Γ is the impulse sensitivity function ISF
qmax, the maximum charge displacement across the capacitor, is a normalizing factor



Impulse Sensitivity Function (ISF) Model

• The phase variation due to injected noise can be 
modeled as

• The function Γ(ωοτ) is a time-varying proportionality 
factor called the “impulse sensitivity function”
• Encodes information about the sensitivity of the oscillator 

to an impulse injected at phase ωοτ
• Phase shift is assumed linear to charge injection
• ISF has the same oscillation period as the oscillator

• The phase impulse response can be written as
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17 ELEN620-IC Design of Broadband Communication circuit

How to obtain the Impulse sensitivity function 
for a LC oscillator

Γ(ωτ) can be obtained using Cadence
Consider the effect on phase noise of each noise source 



YCLO
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Typical ISF Example
 The ISF can be estimated analytically or calculated 
from simulation.
 The ISF reaches peak during zero crossing and zero 
at peak for typical LC and ring oscillators.



Phase Noise Computation
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ISF Decomposition w/ Fourier Series
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Phase Noise Frequency Conversion
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Phase Noise Due to White & 1/f Sources
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How to Minimize Phase Noise?
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1/f Corner Frequency
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Cyclostationary Noise Treatment
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Key Oscillator Design Points 
from Hajimiri Model

• As the LTI model predicts, oscillator signal power 
and Q should be maximized 

• Ideally, the energy returned to the tank should be 
delivered all at once when the ISF is minimum

• Oscillators with symmetry properties that have small 
Γdc will provide minimum 1/f noise upconversion
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Phasor-Based Phase Noise Analysis

• Models noise at 2 sideband  frequencies 
with modulation terms

• The α1 and α2 terms sum co-linear with 
the carrier phasor and produce 
amplitude modulation (AM)

• The φ1 and φ2 terms sum orthogonal 
with the carrier phasor and produce 
phase modulation (PM)
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Phasor-Based LC Oscillator Analysis

• This phasor-based approach 
can be used to find closed-
form expressions for LC 
oscillator phase noise that 
provide design insight

• In particular, an accurate 
expression for the Leeson
model F parameter is obtained
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LC Oscillator F Parameter

• 1st Term = Tank Resistance Noise
• 2nd Term = Cross-Coupled Pair Noise
• 3rd Term = Tail Current Source Noise
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• The above expression gives us insight on how to optimize 
the oscillator to reduce phase noise

• The tail current source is often a significant contributor to 
total noise
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Loading in Current-Biased Oscillator

YCLO
AMSC-TAMU 30

• The current source 
plays 2 roles
• It sets the oscillator bias 

current
• Provides a high impedance 

in series with the 
switching transistors to 
prevent resonator loading



Tail Current Noise
The switching differential pair can 
be modeled as a mixer for noise in 
the  current source
Low frequency noise only 
produces amplitude noise, not 
phase noise
Only the noise located at even 
harmonics will produce phase noise

YCLO
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Noise Filtering in Oscillator
 Only thermal noise in the current source transistor around 2nd

harmonic of the oscillation causes phase noise
In balanced circuits, odd harmonics circulate in a differential 
path, while even harmonics flow in a common-mode path
 A high impedance at the tail is only required at the 2nd harmonic 
to stop the differential pair FETs in triode from loading the 
resonator

YCLO
AMSC-TAMU 32

How can we present a low-
impedance for the 2nd

harmonic noise current to 
filter it and a high-impedance 
to the tank at the 2nd

harmonic to avoid loading the 
tank?



Noise Filtering in Oscillator
 Tail-biased VCO with noise filtering.

YCLO
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Phase Noise w/ Tail Current Filtering

• Tail current noise filtering provides near 7dB improvement 
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Noise Filtering in Oscillator
A top-biased VCO often provides improved substrate 
noise rejection and reduced flicker noise

YCLO
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Next Time

• Divider Circuits

36
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