ECEN620: Network Theory Broadband Circuit Design Fall 2024

Lecture 11: Delay-Locked Loops (DLLs)

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

• HW3 due Oct 24

• DLL Basics

• DLL Applications

Delay-Locked Loop (DLL)

DLLs lock delay of a voltage-controlled delay line (VCDL)

- Typically lock the delay to 1 or 1/2 input clock cycles
 - If locking to $\frac{1}{2}$ clock cycle the DLL is sensitive to clock duty cycle
- DLL does not self-generate the output clock, only delays the input clock

DLL vs PLL Jitter Accumulation

Ring Oscillator

Delay Chain

Fig. 4.3: Timing Jitter Accumulation for Ring Oscillator vs. Delay Chain.

- A VCO will accumulate jitter indefinitely
 - The rms jitter grows at a rate proportional to the sqrt(time)
- A delay line only accumulates jitter proportional to the total delay of the delay line

DLL vs PLL

- Jitter does not accumulate (as much) in a DLL delay line like in a PLL VCO
 - A jitter event simply gets transferred to the output of the delay line once and forgotten, unlike being re-circulated in a VCO
- The order of the DLL is generally equal to the loop-filter order, which is often one
 - DLL stability and settling issues are more relaxed relative to a PLL
- DLLs cannot easily generate different output frequencies, unlike a PLL where we can just change the divide ratio
- DLLs have the potential to delay lock to undesired multiples of the reference cycle, necessitating additional lock detect circuitry with a wide delay range delay line

Voltage-Controlled Delay Line

• The VCDL gain K_{DI} has units of s/V

Delay Cells

DLL Delay Transfer Function

$$F_{REF} \xrightarrow{U} Phase \\ detect \\ D \\ pump \\ C \\ V_{CTRL} \\ VCDL \\ F_0$$

$$D_O(s) = (D_I(s) - D_O(s)) \cdot F_{REF} \cdot \frac{I_{CH}}{sC_1} \cdot K_{DL}$$

$$\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + s/\omega_N}$$

$$\omega_N = I_{CH} \cdot K_{DL} \cdot F_{REF} \cdot \frac{1}{C_1}$$
[Maneatis

- First-order loop as delay line doesn't introduce a (low-frequency) pole
- The delay between reference and feedback signal is low-pass filtered
- Unconditionally stable as long as continuous-time approximation holds, i.e. $\omega_n {<} \omega_{ref} {/} 10$

DLL Applications

- Delay Compensation
- Multiphase Clock Generation
- Frequency Synthesis
- Clock & Data Recovery Systems

Delay Compensation

 A DLL with a replica buffer chain in the feedback path can be used to mask the delay of a clock buffer tree

Multiphase Clock Generation

 A DLL can be used to generate multiple clock phases with precise phase spacing

- Useful in CDRs and RF modulation and up/down-conversion
- Phase errors are a function of the delay cell matching

Reducing Clock Phase Error - 1

- Additional delay cells can be added controlled by individual DLLs matching the 90 spacing
- Secondary DLLs can be classical analog or, for more efficiency, a digital implementation

Reducing Clock Phase Error - 2

 Averaging with phase interpolator (PI) circuits can provide open-loop phase spacing compensation

Phase Interpolators

- Phase interpolators realize digital-to-phase conversion (DPC)
- Produce an output clock that is a weighted sum of two input clock phases
- Common circuit structures
 - Tail current summation
 interpolation
 - Voltage-mode interpolation
- Interpolator code mapping techniques
 - Sinusoidal
 - Linear

DLL Frequency Multiplier

 By adding an ODD number of clock phases generated by a DLL, an output frequency component results which is the input reference signal multiplied by the number of phases that are combined

DLL Frequency Multiplier

 A resonance LC tank load can be used to enhance the desired harmonic and provide filtering of unwanted reference harmonics/spurs due to DLL static phase error and delay element mismatches

Delay Cell Mismatch Impact

- DLL delay cell mismatch, due to process variation or deterministic layout mismatches, causes the delay of the cells to deviate from the ideal value
- This results in phases that are not in the ideal position
- An offset in one delay cell will show up at the output every f_{ref} period, resulting in spurious tones at f_{ref} and harmonics of f_{ref}

Static Phase Error Impact

- If the DLL locks with a static phase error, then the output will have an output cycle with an exaggerated duty cycle error at the end of the delay chain cycle
- This occurs every reference clock period and produces frequency-domain spurs at f_{ref} multiples away from the multiplied output frequency

Experimental Results

 While excellent phase noise performance is achieved, the relatively high spurious tones may be an issue in some applications

DLL Frequency Synthesis w/ Digital Edge Combining

 The DLL edges can also be combined with digital logic, allowing for area savings relative to LC-tank filtering

CMOS DLL-Based 2-V 3.2-ps Jitter 1-GHz Clock Synthesizer and Temperature-Compensated Tunable Oscillator, David J. Foley and Michael P. Flynn

Multiplying DLL

- The delay line is configured as an oscillator for M-1 cycles
- Then is "reset" by the input clock for one cycle

A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips, Ramin Farjad-Rad, William Dally, Hiok-Tiaq Ng, Ramesh Senthinathan, M.-J. Edward Lee, Rohit Rathi, and John Poulton

Multiplying DLL Delay Line

- Clock selection mux is implemented with CMOS transmission gates
- Delay elements are supplyregulated CMOS inverters
- Additional "trim" inverters are added to prevent Vctrl from falling too low and KDL from increasing dramatically

A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips, Ramin Farjad-Rad, *William Dally, Hiok-Tiaq Ng,* Ramesh Senthinathan, M.-J. Edward Lee, Rohit Rathi, and John Poulton

Critical Mux Select Signal

- When sel is high, rclk should get transferred to the delay line
- However, the next falling edge should be defined by bclk
- This results in very tight timing constraints in the sel generation circuitry
- If the sel signal is too slow, then an output cycle will have significant duty cycle distortion, resulting in bad spur performance
- A dynamic gate is used to increase the sel signal speed

A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips, Ramin Farjad-Rad, *William Dally, Hiok-Tiaq Ng,* Ramesh Senthinathan, M.-J. Edward Lee, Rohit Rathi, and John Poulton

Experimental Results

 f_{ref} =250MHz, M=8, f_{out} =2GHz

Process Technology	0.18µm standard CMOS
Supply Voltage	1.8V
Active Area	0.05mm ²
Power @ 2.0GHz	12mW
Frequency Range	200MHz – 2.0GHz
Random jitter @ 2.0GHz (10)	1.64ps (250MHz X 8) 1.73ps (250MHz X 8, 72 X 72 grooming switch)
Random jitter @2.0GHz (peak-to-peak)	13.11ps (250MHz X 8)
Deterministic jitter @2.0GHz	12.00ps (250MHz X 8)
Random jitter @2.0GHz, 1.65V (10)	1.89ps (250MHz X 8)
Random jitter @2.5GHz, 2.00V (1o)	1.94ps (250MHz X 10)
Random jitter @1.25GHz (10)	1.74ps (250MHz X 5)
Random jitter @1.25GHz (10)	1.99ps (125MHz X 10)

- The deterministic jitter is most likely dominated by the mux select operation
- Random jitter increases with N factor
 - The delay line is in oscillator mode for more cycles

Embedded Clock I/O Circuits

TX PLL

- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels

DLL Local Phase Generation

- Only differential clock is distributed from global PLL
- Delay-Locked Loop (DLL) locally generates the multiple clock phases for the phase interpolators
 - DLL can be per-channel or shared by a small number (4)
- Same architecture can be used in a forwarded-clock system
 - Replace frequency synthesis PLL with forwarded-clock signals

Additional DLL References

- "A Low-Power Small-Area 7.28-ps-Jitter 1-GHz DLL-Based Clock Generator" Chulwoo Kim, et al.. JSSC 2002
- "Jitter Transfer Characteristics of Delay-Locked Loops Theories and Design Techniques", M.-J. Edward Lee, et all.. JSSC 2003
- "The Design and Analysis of a DLL-Based Frequency Synthesizer for UWB Application", Tai-Cheng Lee *and Keng-Jan Hsiao. JSSC 2006*
- "A 120-MHz–1.8-GHz CMOS DLL-Based Clock Generator for Dynamic Frequency Scaling", Jin-Han Kim, JSSC 2006

Next Time

Clock-and-Data Recovery Systems