ECEN620: Network Theory Broadband Circuit Design Fall 2023

Lecture 10: Fractional-N Frequency Synthesizers

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW3 due Oct 31
- HW4 due Nov 7

- PLL Bandwidth and Frequency Resolution Trade-Offs
- Fractional-N Frequency Synthesizers
- Modulus Randomization and Noise Shaping

PLL Bandwidth Constraints

- PLL loop bandwidth should be <0.1*f_{ref} in order to maintain loop stability
 - Continuous-time model breaks down if loop bandwidth is too high

Issues with Synthesizing Frequencies at a Tight Channel Spacing

 In a simple integer-N PLL, the output frequency resolution is equal to the input reference frequency

Issues with Synthesizing Frequencies at a Tight Channel Spacing

- In integer-N PLLs, synthesizing tight channel spacings requires extremely low effective reference frequencies
- This results in very low loop bandwidths and high divide ratios
 - Slow PLL frequency switching time
 - Large area passives
 - High phase noise at low frequencies

- PLL Bandwidth and Frequency Resolution Trade-Offs
- Fractional-N Frequency Synthesizers
- Modulus Randomization and Noise Shaping

Fractional-N Frequency Synthesizers

- A fractional-N frequency synthesizer allows the effective division ratio to take on a fractional value
- The output frequency can then be at a much higher resolution than the reference frequency
- Allows a higher loop bandwidth

Effective Divide Ratio

where A is the number of VCO cycles divided by N and

B is the number of VCO cycles divided by N+1

Example: To realize an effective divide ratio of 4.25,

divide by 4 three times (12 VCO cycles) and 5 once (5 VCO cycles)

$$N_{eff} = \frac{A+B}{\frac{A}{N} + \frac{B}{N+1}} = \frac{12+5}{\frac{12}{4} + \frac{5}{5}} = \frac{17}{4} = 4.25$$

Dual Modulus Prescalers

Synchronous ÷3/4

Asynchronous ÷4

 For /15, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles

Phase Error with Simple Periodic Modulus Control

 As only the average of the feedback frequency is equal to the reference frequency, the phase error will accumulate over N reference cycles before being reset

Fractional-N Frequency Synthesizer Spurs

- Simple periodic modulus control causes a ramp-type phase error accumulation over N reference cycles
- This is translated into periodic disturbances in the VCO control voltage, which causes relatively closein spurs in the frequency domain

- PLL Bandwidth and Frequency Resolution Trade-Offs
- Fractional-N Frequency Synthesizers
- Modulus Randomization and Noise Shaping

Spur Suppression with Modulus Randomization

- Instead of periodically changing the divider modulus, randomly switch it such that the average division factor still yields the desired fractional value
- This converts the systematic fractional spurs into random noise

Including Noise Shaping in Modulus Control

 This technique can be extended by in addition to randomization, shaping the noise in such a way that it can be filtered by the PLL

Sigma-Delta Modulation Noise Shaping

- High-pass noise shaping can be realized by using a sigma-delta modulator for modulus control
- The divider quantization noise can then be filtered by the PLL more efficiently

To PD From VCO $x_F(t)$ $\frac{2}{0}(N+1)/N$ f_{out} b(t) $\Sigma\Delta$ Modulator

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 28, NO. 5, MAY 1993

Delta–Sigma Modulation in Fractional-N Frequency Synthesis

Tom A. D. Riley, Member, IEEE, Miles A. Copeland, Fellow, IEEE, and Tad A. Kwasniewski, Member, IEEE

553

Next Time

- Delay-Locked Loops (DLLs)
- Clock-and-Data Recovery Systems