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Announcements
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• HW3 due Oct 31



Agenda
• VCO Fundamentals
• VCO Examples
• VCO Phase Noise

• Phase Noise Definition and Impact
• Ideal Oscillator Phase Noise
• Leeson Model
• Hajimiri Model
• LC-VCO Phase Noise Sources

• VCO Jitter
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Analog Charge-Pump PLL Circuits
• Phase Detector

• Charge-Pump
• Loop Filter
• VCO
• Divider
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Voltage-Controlled Oscillator

• Time-domain phase relationship
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Laplace Domain Model
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Voltage-Controlled Oscillators (VCO)
• Ring Oscillator

• Easy to integrate
• Wide tuning range (5x)
• Higher phase noise

• LC Oscillator
• Large area
• Narrow tuning range (20-30%)
• Lower phase noise
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Barkhausen’s Oscillation Criteria

• Sustained oscillation occurs if

• 2 conditions:
• Gain = 1 at oscillation frequency 0
• Total phase shift around loop is n360 at oscillation frequency 0
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𝐻 𝑠
𝐴

1 𝑠
𝜔

Phase Condition: tan 45° → 𝜔 𝜔

Gain Condition: 1 → 𝐴 2 𝑔 𝑅

Ring Oscillator Example
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LC Oscillator Example
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LC tank impedance

• Oscillation phase shift condition 
satisfied at the frequency when 
the LC (and R) tank load 
displays a purely real 
impedance, i.e. 0 phase shift



LC Oscillator Example
• Transforming the series loss 

resistor of the inductor to an 
equivalent parallel resistance
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LC Oscillator Example
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Loop Gain

• Phase condition satisfied at

• Gain condition satisfied when

[Razavi]

• Can also view this circuit as a parallel 
combination of a tank with loss resistance 
2RP and negative resistance of 2/gm

• Oscillation is satisfied when 
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• Noise in the system will initiate oscillation, with the signals 
eventually exhibiting rail-to-rail swings

• While the small-signal transistor parameters (gm, go, Cg, 
etc…) can be used to predict the initial oscillations during 
small-signal start-up, these parameters can vary 
dramatically during large-signal operation

CMOS Inverter Ring Oscillator
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[Razavi]



• For this large-signal oscillator, the frequency is set by the 
stage delay, TD

• TD is a function of the nonlinear current drive and 
capacitances of each stage

• As an “edge” has to propagate twice around the loop

CMOS Inverter Ring Oscillator
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[Razavi]
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Supply-Tuned Ring Oscillator
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Current-Starved Ring Oscillator
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[Sanchez]



Capacitive-Tuned Ring Oscillator
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Symmetric Load Ring Oscillator
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[Maneatis JSSC 1996 & 2003]

• Symmetric load provides frequency tuning at excellent 
supply noise rejection

• See Maneatis papers for self-biased techniques to obtain 
constant damping factor and loop bandwidth (% of ref clk)

2ID



Pseudo-Differential Ring Oscillators
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[Frans JSSC 2015]

• Often supply-tuned with a regulator
• Band select is possible with adjustable capacitors and main path 

inverter strength
• Due to even stages, there is a potential for the oscillator to be stuck in 

a non-differential mode
• Adjustable ratio between cross-coupled and main inverters, initially 

large, ensures startup in differential mode. This can be reduced during 
normal operation.



LC Oscillator
• A variable capacitor 

(varactor) is often used to 
adjust oscillation frequency

• Total capacitance includes 
both tuning capacitance and 
fixed capacitances which 
reduce the tuning range
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 fixedtunePPP
osc CCLCL 
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Varactors
• pn junction varactor

• Avoid forward bias region to prevent oscillator nonlinearity

21

• MOS varactor
• Accumulation-mode devices have better Q than inversion-mode

[Perrott]

n-well
[Razavi]
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Oscillator Noise
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Jitter

[McNeill]



Phase Noise Definition

• An ideal oscillator has an impulse shape in the frequency domain
• A real oscillator has phase noise “skirts” centered at the carrier frequency
• Phase noise is quantified as the normalized noise power in a 1Hz 

bandwidth at a frequency offset  from the carrier
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Phase Noise Impact in RF Communication

• At the RX, a large interferer can degrade the 
SNR of the wanted signal due to “reciprocal 
mixing” caused by the LO phase noise

• Having large phase noise at the TX can degrade 
the performance of a nearby RX

25

RX Reciprocal Mixing Strong Noisy TX Interfering with RX



Jitter Impact in HS Links
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• RX sample clock jitter reduces the timing margin 
of the system for a given bit-error-rate

• TX jitter also reduces timing margin, and can be 
amplified by low-pass channels



Ideal Oscillator Phase Noise
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Tank Impedance Near Resonance
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Ideal Oscillator Phase Noise
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Other Phase Noise Sources

• Tank thermal noise is only one piece of the 
phase noise puzzle

• Oscillator transistors introduce their own thermal 
noise and also flicker (1/f) noise

30

[Perrott]



Leeson Phase Noise Model

31

• Leeson’s model modifies the 
previously derived expression to 
account for the high frequency 
noise floor and 1/f noise 
upconversion

• A empirical fitting parameter F is 
introduced to account for 
increased thermal noise

• Model predicts that the (1/)3

region boundary is equal to the 
1/f corner of device noise and 
the oscillator noise flattens at 
half the resonator bandwidth

   dBc/Hz   1
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12log10
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32 ELEN620-IC Design of Broadband Communication circuit

A 3.5GHz LC-Tank VCO Phase Noise

Measured
Phase
Noise

-30dB/decade -20dB/decade

-105dBc



33 ELEN620-IC Design of Broadband Communication circuit

RBW=10K

PN=-85dBm-(-20dBm)-
10log10(10e3)

=-105dBc

VCO Output Spectrum Example

-85dBm

-20dBm

dBc---in dB 
with respect to 
carrier

Make sure to account for 
the spectrum analyzer 
resolution bandwidth



Leeson Model Issues
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• The empirical fitting 
parameter F is not known 
in advance and can vary 
with different process 
technologies and 
oscillator topologies

• The actual transition 
frequencies predicted by 
the Leeson model does 
not always match 
measured data 



Time-Varying Phase Noise Model: 
Hajimiri-Lee Model
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• Noise injection at oscillator peak output time introduces only 
amplitude noise

• Noise injection at oscillator zero crossing time introduces 
maximum phase noise



Time-Varying Phase Noise Model: 
Hajimiri-Lee Model
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• Impulse current applied to the tank to measure its 
sensitivity function

f
in


2

• The impulse response for the phase variation can be 
represented as

 is the impulse sensitivity function (ISF)
qmax, the maximum charge displacement across the capacitor, is a normalizing factor



Impulse Sensitivity Function (ISF) Model

• The phase variation due to injected noise can be 
modeled as

37

• The function () is a time-varying proportionality 
factor called the “impulse sensitivity function”
• Encodes information about the sensitivity of the oscillator 

to an impulse injected at phase  (0 to 2)
• Phase shift is assumed linear to charge injection
• ISF has the same oscillation period as the oscillator

• The phase impulse response can be written as



Obtaining the ISF

• () can be obtained using Cadence for 
each oscillator noise source

38



Typical Oscillator ISFs

• ISF estimated analytically or calculated from simulation
• ISF peaks during zero crossing time and is zero at the 

signal peak time for typical LC and ring oscillators
39



Phase Noise Computation
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ISF Decomposition w/ Fourier Series
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Phase Noise Frequency Conversion
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Phase Noise Due to White & 1/f Sources
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How to Minimize Phase Noise?
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1/f Corner Frequency
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Cyclostationary Noise Treatment
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Key Oscillator Design Points 
from Hajimiri Model

47

• As the LTI model predicts, oscillator signal power 
and Q should be maximized 

• Ideally, the energy returned to the tank should be 
delivered all at once when the ISF is minimum

• Oscillators with symmetry properties that have small 
dc will provide minimum 1/f noise upconversion



LC-VCO Phase Noise Sources

• Finite tank quality factor (Rp)
• Cross-coupled pair (M1 & M2)
• Tail current source (M3)

48
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Tank Noise (Rp)

• Two-Sided Rp Noise Spectral Density
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• This gets filtered by the tank 
impedance near resonance frequency
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• Differential Signal Amplitude



Tank Noise (Rp)
• One-Sided Normalized Phase 

Noise Spectral Density
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LC-Oscillator 
w/ Differential Tank & Noise Sources

• Tank Noise Phase Noise Contribution

Convert to 1-Sided Equipartition Theorem

𝑆 ∆𝜔
𝐼 2 1

2 𝑍 ∆𝜔

Differential RMS Voltage

𝑆 , ∆𝜔
𝜋 𝑘𝑇
𝐼 𝑅

𝜔
4𝑄 ∆𝜔

• Tank phase noise is filtered by the tank impedance and 
falls off 

∆
(-20dB/dec) 

• Phase noise improves Q2 and signal power



Cross-Coupled Pair Noise (M1 + M2)

• Two-Sided M1+M2 Noise Density 
w/ 3/8 Cyclostationary Factor 
(Thermal Noise Only)
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LC-Oscillator 
w/ Differential Tank & Noise Sources

• Cross-Coupled Pair Contribution

• Thermal noise falls off 
∆

(-20dB/dec) 
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Cross-Coupled Pair Flicker Noise
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• Predicts that flicker noise falls off ∝
∆

(-30dB/dec) 

• However, the expression is not very accurate and is only a conservative 
estimate that does not capture the oscillator’s linear time varying nature

• A more accurate approach extracts the oscillator’s time varying impulse 
sensitivity function (Hajimiri model)

Flicker Noise 𝑆 , ∆𝜔
𝜋

2𝐼
3
8
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2𝑊𝐿𝐶
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4𝑄 ∆𝜔

• If we use a similar approach for the cross-coupled pair flicker noise
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Linear Time Varying Model
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• Models output phase noise as convolution with a time-varying impulse 
response h(t,) and the noise source n(t)

𝜙 𝑡 ℎ 𝑡, 𝜏 ∗ 𝑛 𝑡

ℎ 𝑡, 𝜏
Γ 𝜔 𝜏
𝑞 𝑢 𝑡 𝜏

Impulse Sensitivity Function

 Γ 𝜔 𝜏
𝑐
2 𝑐 𝑐𝑜𝑠 𝑛𝜔 𝜏 𝜃

• Making the oscillator’s ISF odd-
symmetric can minimize c0 and the 
flicker noise contribution

Hajimiri Model Flicker Noise

 𝑆 , ∆𝜔
𝑐 𝜋𝐾 𝑔

4𝑞 𝑊𝐿𝐶 ∆𝜔

[Lee JSSC 2000]



Bias Current Source Noise #1: 
Tail Capacitance Loading

54

• If the oscillator’s swing is large the cross-coupled 
transistors can enter triode and have a small Ron

• The tank is then loaded by the series combination of the 
transistor Ron and tail current source capacitance

• If the tail current source capacitance is large due to 
parasitics or in an attempt to filter the tail current noise, 
then the tank Q and phase noise degrades

𝑅
1

𝑅 𝐶 𝜔

[Razavi]



Bias Current Source Noise #2: 20 Noise

55

• The switching differential pair can be modeled as a mixer for current source noise
• Low-frequency noise is up-converted near the carrier, but produce components 

that add in a parallel manner and only produce AM
• Noise near 20 is down-converted near the carrier and produces components that 

are both parallel (AM) and orthogonal (PM)
• Using a 3rd-order switching model and considering only 20 noise

[Hegazi JSSC 2001] Output PSD

𝑆 , ∆𝜔
4𝐼 ,

9𝐼
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4𝑄 ∆𝜔



Tail Current Filter to Reduce 20 Noise

56

• Introducing a tail-current filter to attenuate this second-order harmonic can 
improve phase noise performance

• Large capacitor in parallel with current source shorts high-frequency noise
• Series inductor resonating with differential transistors’ source capacitors at 20

provides a high impedance and reduces tank loading
• Provides near 7dB phase noise improvement

[Hegazi JSSC 2001]

Tail Current Top Bias



Bias Current Source Noise #3: Flicker Noise 
AM/PM Conversion Through Varactors

57

• Tail current flicker noise can produce AM on the carrier
• AM/PM conversion can result if the varactors are not 

symmetric about the voltage axis (even-order voltage 
dependence)

[Razavi]



Varactor Configurations to Minimize AM/PM

58

• Goal is to make the varactor more symmetric with 
changes in oscillator amplitude due to flicker noise

Single-Ended

Differential

Back-to-Back Series

[Bonfanti TCAS1 2006]



Varactor Configurations to Minimize AM/PM

59

• Differential is worse 
due to the always 
increasing value 
(even-order 
dependence)

DifferentialSingle-Ended

Back-to-Back Series

• Tuning voltage is applied with through 
a resistor that appears as an open at 0

• Back-to-back series has the smallest 
deviation from the average value

[Bonfanti TCAS1 2006]



2GHz LC-VCO Simulation Results
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• Back-to-back series has comparable tuning range 
and KVCO as the default single-ended configuration

• 16dB improvement in low-frequency phase noise
• Main trade-off is increased varactor area (4X)

[Bonfanti TCAS1 2006]



Reducing LC-VCO Noise in FinFET Processes

61

• NMOS only current-limited 
LC-VCO avoids the high 
flicker noise present in 
PMOS transistors

• Stacked devices further 
reduced flicker noise

• Regulator noise reduced 
with RC filtering

• Low current multiplication 
factor to minimize tail 
current noise

• MOM cap switches 
designed to improve tank Q [Turker ISSCC 2018]



LC-VCO Capacitor Switch

62

• When sel=0, high impedance 
stacked transistors pull nodes 
A & B higher to minimize Q 
degradation due to M1 leakage [Turker ISSCC 2018]

Sel=1

Sel=0



Filtering LC-VCO Regulator Flicker Noise

63

• RC filter at reference input
• Regulator designed with transistor stacking, double gate 

contacts, and large width & lengths
• Programmable sub-threshold FET resistor to realize kHz 

range filter

[Turker ISSCC 2018]

(A & B)

Carrier frequency = 16GHz
A B C

(C) Further improves noise by ~3.5dB 

Sub-threshold FET R~= 1M-ohm to 50M-ohm
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Open-Loop VCO Jitter

• Measure distribution of clock threshold crossings
• Plot  as a function of delay T

65

[McNeill]

DT



Open-Loop VCO Jitter

• Jitter  is proportional to sqrt(T)
•  is VCO time domain figure of merit

66

   TTOLT  

[McNeill]



VCO in Closed-Loop PLL Jitter
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• PLL limits  for delays longer than loop bandwidth L

LL f 21

[McNeill]



Ref Clk-Referenced vs Self-Referenced

68

[McNeill]

Ref Clock for 
Frequency Synthesis PLL

• Generally, we care about the jitter w.r.t. the ref. clock (x)
• However, may be easier to measure w.r.t. delayed version of output clk

• Due to noise on both edges, this will be increased by a sqrt(2) factor relative 
to the reference clock-referred jitter

CDR Example



Converting Phase Noise to Jitter

69

• Actual integration range depends on application bandwidth
• fmin set by asumed CDR tracking bandwidth
• fmax set by Nyquist frequency (f0/2)

• Most exact approach

   2 2
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4 sinT
o
S f f T df 





  • RMS jitter for DT accumulation

• As DT goes to ∞    2
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Next Time
• Divider Circuits

70


