ECEN620: Network Theory Broadband Circuit Design Fall 2024

Lecture 4: Phase Detector Circuits

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

• HW1 due Sept 12, 11:59PM

• Turn in via Canvas

Agenda

Phase Detector Circuits

- Mixer PD
- XOR PD
- J-K Flip-Flop PD
- Phase-Frequency Detector (PFD)

References

- *RF Microelectronics,* B. Razavi, Prentice Hall, 1998.
- Design of Integrated Circuits for Optical Communications, B. Razavi, McGraw-Hill, 2003.
- *Monolithic Phase-Locked Loops and Clock Recovery Circuits,* B. Razavi, Wiley, 1996.
- M. Perrott, *High Speed Communication Circuits and Systems Course*, MIT Open Courseware

Phase Detector

- Detects phase difference between feedback clock and reference clock
- The loop filter will filter the phase detector output, thus to characterize phase detector gain, extract average output voltage
- The K_{PD} factor can change depending on the specific phase detector circuit

 $K_{\rm PD}$ units are V/rad when used with a dimension - less filter

 K_{PD} units are rad⁻¹ (averaged) or A/rad when combined with the charge - pump

when used with a impedance filter

Analog Multiplier Phase Detector

$$A_{1} \cos \omega_{1} t \longrightarrow \frac{\alpha A_{1} A_{2}}{2} \cos[(\omega_{1} + \omega_{2})t + \Delta \phi] + \frac{\alpha A_{1} A_{2}}{2} \cos[(\omega_{1} - \omega_{2})t - \Delta \phi]$$

$$A_{2} \cos(\omega_{2} t + \Delta \phi) \longrightarrow \alpha \text{ is mixer gain}$$

• If $\omega_1 = \omega_2$ and filtering out high-frequency term

$$\overline{y(t)} = \frac{\alpha A_1 A_2}{2} \cos \Delta \phi$$

• Near $\Delta \phi$ lock region of $\pi/2$: $\overline{y(t)} \approx \frac{\alpha A_1 A_2}{2} \left(\frac{\pi}{2} - \Delta \phi \right)$

Analog Mixer PD Properties

- The nominal lock point (zero frequency offset or Type-2) with a mixer PD is a 90° static phase shift
 - For many applications this is unimportant or can be cancelled elsewhere
- The mixer cannot serve as a frequency detector, as on average the output will be zero for a frequency difference
- K_{PD} is a function of the input amplitude, which is not desired

Mixer Circuits

Active Mixers

Passive Mixer

XOR Phase Detector

- Assuming logic 1="+1" and 0="-1", the XOR PD will lock when the average output is 0
 - Generally, $\pi/2$ is a stable lock point and $-\pi/2$ is a metastable point
- Sensitive to clock duty cycle

XOR Phase Detector

Stable vs Metastable Lock Point

- The PLL should be configured in negative feedback based on the phase detector gain
- However, the phase detector gain varies as a function of the phase error
- Generally, the PLL is designed to have a stable lock point with a $\pi/2$ phase offset
 - $-\pi/2$ is a metastable lock point because it is in a positive feedback operation range

Cycle Slipping

- If there is a frequency difference between the input reference and PLL feedback signals the phase detector can jump between regions of different gain
 - PLL is no longer acting as a linear system

Cycle Slipping

• If frequency difference is too large the PLL may not lock

XOR PD Properties

- The nominal lock point with an XOR PD is also a 90° static phase shift
- Unlike the analog mixer, K_{PD} is independent of input amplitude and constant over a π phase range
- The XOR PD is sensitive to input duty cycle, and will lock with a phase error if the input duty cycles are not 50%

J-K Flip-Flop Phase Detector

J-K Flip-Flop Details

J-K Flip-Flop Phase Detector Harmonic Locking

 Harmonic signals can display the same DC output, leading to potential locking to harmonics

J-K Flip-Flop PD Properties

- The nominal lock point with an J-K Flip-Flop PD is a 180° static phase shift
- The J-K Flip-Flop PD is not sensitive to input duty cycle
- The J-K Flip-Flop displays a constant KPD over a 2π range
- There is the potential to lock to harmonics of the reference clock

Phase Frequency Detector (PFD)

- Phase Frequency Detector allows for wide frequency locking range, potentially entire VCO tuning range
- 3-stage operation w/ UP & DN outputs
 - Rising edge-triggered results in duty cycle insensitivity

Averaged PFD Transfer Characteristic

- Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation
- The averaged PFD gain is $1/(2\pi)$ with units of rad⁻¹

PFD Deadzone

- If phase error is small, then short output pulses are produced by PFD
- Cannot effectively propagate these pulses to switch charge pump
- Results in phase detector "dead zone" which causes low loop gain and increased jitter

PFD Operation w/ Reset Delay

- Solution is to add delay in PFD reset path to force a minimum UP and DN pulse length
- In locked state both UP and DN current sources are on for T_{rst}, but ideally no net current is delivered to loop filter

Problems Near 2π

- PFD cannot react to input rising edges during reset
- This can result in the next rising edge driving the loop in the wrong direction
- Reset delay can increase acquisition time and sets a max PFD operating frequency

PFD Transfer Characteristic w/ Reset Delay

- PFD reset delay generates wrong frequency information
- If this becomes a large percentage of the reference cycle, then the PFD can fail to acquire frequency lock

Max
$$T_{rst} = \frac{T_{ref}}{2}$$

Max PFD Frequency $= \frac{1}{2T_{rst}}$

PFD Properties

- The nominal lock point with a PFD is 0°
- The PFD is not sensitive to input duty cycle
- The PFD outputs "UP" and "DN" are not complementary and stay high until reset by the other, allowing for efficient frequency detection
- Near lock, the propagation of narrow pulses to switch the charge pump can cause a phase detector "dead zone"
 - To prevent this, extra delay is generally inserted in the PFD reset path

Detailed Optimized PFD Schematic

 Because the flip-flop data input is always "1", the logic can be optimized for higher speed operation

Next Time

• Charge Pump Circuits