ECEN620: Network Theory Broadband Circuit Design Fall 2014

Lecture 3: PLL Analysis

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Agenda & Reading

- PLL Overview & Applications
- PLL Linear Model
- Phase & Frequency Relationships
- PLL Transfer Functions
- PLL Order & Type

- Reading
 - Chapter 2, 3, 5, & 12 of *Phaselock Techniques*,
 F. Gardner, John Wiley & Sons, 2005.

References

- M. Perrott, High Speed Communication Circuits and Systems Course, MIT Open Courseware
- Chapter 2 of Phase-Locked Loops, 3rd Ed., R. Best, McGraw-Hill, 1997.

Chapter 2, 3, 5, & 12 of *Phaselock Techniques*, F.
 Gardner, John Wiley & Sons, 2005.

PLL Block Diagram

 A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal

PLL Applications

- PLLs applications
 - Frequency synthesis
 - Multiplying a 100MHz reference clock to 10GHz
 - Skew cancellation
 - Phase aligning an internal clock to an I/O clock
 - Clock recovery
 - Extract from incoming data stream the clock frequency and optimum phase of high-speed sampling clocks
 - Modulation/De-modulation
 - Wireless systems
 - Spread-spectrum clocking

Forward Clock I/O Circuits

Multi-Channel Serial Link System

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator

Embedded Clock I/O Circuits

Multi-Channel Serial Link System

TX PLL

TX Clock Distribution

- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels

Linear PLL Model

- Phase is generally the key variable of interest
- Linear "small-signal" analysis is useful for understand PLL dynamics if
 - PLL is locked (or near lock)
 - Input phase deviation amplitude is small enough to maintain operation in lock range

Phase Detector

- Detects phase difference between feedback clock and reference clock
- The loop filter will filter the phase detector output, thus to characterize phase detector gain, extract average output voltage (or current for charge-pump PLLs)

9

Loop Filter

 Lowpass filter extracts average of phase detector error pulses

Voltage-Controlled Oscillator

$$\omega_{out}(t) = \omega_0 + \Delta\omega_{out}(t) = \omega_0 + K_{VCO}v_c(t)$$

Time-domain phase relationship

$$\phi_{out}(t) = \int \Delta \omega_{out}(t) dt = K_{VCO} \int v_c(t) dt$$

Laplace Domain Model

Loop Divider

Time-domain model

$$\omega_{fb}(t) = \frac{1}{N} \omega_{out}(t)$$

$$\phi_{fb}(t) = \int \frac{1}{N} \omega_{out}(t) dt = \frac{1}{N} \phi_{out}(t)$$

Phase & Frequency Relationships

Angular Frequency is the first derivative (rate of change vs time) of phase

$$\frac{\mathrm{d}\phi(\mathsf{t})}{dt} = \omega(\mathsf{t})$$

$$\phi(t) = \int_{0}^{t} \omega(\tau) d\tau$$

Consider a sinusoid $u_1(t)$ with angular frequency $\omega_1(t)$ and phase $\phi_1(t)$

$$u_1(t) = \sin(\omega_1(t)t + \phi_1(t))$$

Phase Step

$$\phi_1(t) = \Delta \Phi u(t)$$

$$u_1(t) = \sin(\omega_1(t) + \Delta\Phi u(t))$$

No change in frequency

Phase & Frequency Relationships

Frequency Step

$$\omega_1(t) = \omega_0 + \Delta \omega$$

$$u_1(t) = \sin(\omega_0 t + \Delta \omega t) = \sin(\omega_0 t + \phi_1(t))$$
where $\phi_1(t) = \Delta \omega t$

A frequency step produces a ramp in phase

Phase & Frequency Relationships

Frequency Ramp

$$\omega_1(t) = \omega_0 + \Delta \omega t$$

$$u_1(t) = \sin\left(\int_0^t \left(\omega_0 + \Delta \dot{\omega} \tau\right) d\tau\right) = \sin\left(\omega_0 t + \frac{\Delta \dot{\omega}}{2} t^2\right) = \sin(\omega_0 t + \phi_1(t))$$

where
$$\phi_1(t) = \frac{\Delta \omega}{2} t^2$$

Understanding PLL Frequency Response

- Linear "small-signal" analysis is useful for understand PLL dynamics if
 - PLL is locked (or near lock)
 - Input phase deviation amplitude is small enough to maintain operation in lock range
- Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency
- PLL transfer function is different depending on which point in the loop the output is responding to

Open-Loop PLL Transfer Function

Open-loop response generally decreases with frequency

Closed-Loop PLL Transfer Function

Forward Path Gain = G(s)

Loop Gain

$$l_1 = -\frac{K_{PD}K_{VCO}F(s)}{sN} = -\frac{G(s)}{N}$$

Forward Path Determinant $\Delta_1 = 1 - 0 = 1$

$$H(s) = \frac{\Phi_{out}(s)}{\Phi_{ref}(s)} = \frac{G(s)}{1 + \frac{G(s)}{N}} = \frac{K_{PD}K_{VCO}F(s)}{s + \frac{K_{PD}K_{VCO}F(s)}{N}}$$

- System Determinant $\Delta = 1 \left(-\frac{G(s)}{N}\right) + 0 = 1 + \frac{G(s)}{N}$
- Low-pass response whose overall order is set by F(s)

PLL Error Transfer Function

Forward Path Gain = 1

Loop Gain

$$l_1 = -\frac{K_{PD}K_{VCO}F(s)}{sN} = -\frac{G(s)}{N}$$

Forward Path Determinant $\Delta_1 = 1 - 0 = 1$

System Determinant
$$\Delta = 1 - \left(-\frac{G(s)}{N}\right) + 0 = 1 + \frac{G(s)}{N}$$

$$E(s) = \frac{\Phi_{e}(s)}{\Phi_{ref}(s)} = \frac{1}{1 + \frac{G(s)}{N}} = \frac{s}{s + \frac{K_{PD}K_{VCO}F(s)}{N}}$$

- Ideally, we want this to be zero
- Phase error generally increases with frequency due to this high-pass response

PLL Order and Type

- The PLL order refers to the number of poles in the closed-loop transfer function
 - This is typically one greater than the number of loop filter poles
- The PLL type refers to the number of integrators within the loop
 - A PLL is always at lease Type 1 due to the VCO integrator
- Note, the order can never be less than the type

First-Order PLL

 Simple first-order lowpass transfer function

 Closed-loop bandwidth is equal to the DC loop gain magnitude

$$F(s) = K_1$$
Forward Path Gain: $G(s) = \frac{K_{PD}K_{VCO}K_1}{s} = \frac{NK_{DC}}{s}$

DC Loop Gain Magnitude:
$$K_{DC} = \lim_{s \to 0} \left(\frac{sG(s)}{N} \right) = \frac{K_{PD}K_{VCO}K_1}{N}$$

Transfer Function:
$$H(s) = \frac{K_{PD}K_{VCO}K_1}{s + \frac{K_{PD}K_{VCO}K_1}{N}} = \frac{N\omega_{3dB}}{s + \omega_{3dB}} = \frac{NK_{DC}}{s + K_{DC}}$$

Closed - Loop Bandwidth:
$$\omega_{3dB} = \frac{K_{PD}K_{VCO}K_1}{N} = K_{DC}$$

Error Function:
$$E(s) = \frac{s}{s + \frac{K_{PD}K_{VCO}K_1}{N}} = \frac{s}{s + \omega_{3dB}} = \frac{s}{s + K_{DC}}$$

First-Order PLL Tracking Response

- The PLL's tracking behavior, or how the phase error responds to an input phase change, varies with the PLL type
- Phase Step Response

$$\phi_1(t) = \Delta \Phi u(t)$$

$$u_1(t) = \sin(\omega_1(t) + \Delta \Phi u(t))$$

No change in frequency

The final value theorem can be used to find the steady-state phase error

$$\lim_{s \to 0} \left(\frac{\Delta \Phi}{s} \right) \left(sE(s) \right) = \lim_{s \to 0} \frac{\Delta \Phi s}{s + K_{DC}} = 0$$

- All PLLs should have no steady-state phase error with a phase step error
 - Note, this assumes that the frequency of operation is the same as the VCO center frequency (V_{ctrl}=0). Working at a frequency other than the VCO center frequency is considered having a frequency offset (step).

First-Order PLL Tracking Response

Frequency Offset (Step)

$$\omega_1(t) = \omega_0 + \Delta \omega$$

$$u_1(t) = \sin(\omega_0 t + \Delta \omega t) = \sin(\omega_0 t + \phi_1(t))$$
where $\phi_1(t) = \Delta \omega t$

A frequency step produces a ramp in phase

 The final value theorem can be used to find the steadystate phase error

$$\lim_{s\to 0} \left(\frac{\Delta\omega}{s^2}\right) (sE(s)) = \lim_{s\to 0} \frac{\Delta\omega}{s+K_{DC}} = \frac{\Delta\omega}{K_{DC}}$$

 With a frequency offset (step), a first-order PLL will lock with a steady-state phase error that is inversely proportional to the loop gain

First-Order PLL Issues

- The DC loop gain directly sets the PLL bandwidth
 - No degrees of freedom
- In order to have low phase error, a large loop gain is necessary, which implies a wide bandwidth
 - This may not be desired in applications where we would like to filter input reference clock phase noise
- First-order PLLs offer no filtering of the phase detector output
 - Without this filtering, the PD may not be well approximated by a simple K_{PD} factor
 - Multiplier PDs have a "second-harmonic" term
 - Digital PDs output square pulses that need to be filtered

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter

Passive Lag-Lead Loop Filter

$$F(s) = \frac{1 + s\tau_2}{1 + s(\tau_1 + \tau_2)}$$

$$\tau_1 = R_1 C \qquad \tau_2 = R_2 C$$

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter

$$F(s) = \frac{1+s\,\tau_2}{1+s(\tau_1+\tau_2)} \qquad \text{Forward Path Gain}: G(s) = \frac{K_{PD}K_{VCO}(1+s\,\tau_2)}{s(1+s(\tau_1+\tau_2))} = \frac{NK_{DC}\left(\frac{\tau_2}{\tau_1+\tau_2}\right)\left(s+\frac{1}{\tau_2}\right)}{s\left(s+\frac{1}{\tau_1+\tau_2}\right)}$$

$$\tau_1 = R_1C \qquad \tau_2 = R_2C$$

$$DC \text{ Loop Gain Magnitude}: K_{DC} = \lim_{s\to 0} \left(\frac{sG(s)}{N}\right) = \frac{K_{PD}K_{VCO}}{N}$$

$$Transfer \text{ Function}: H(s) = \frac{\frac{K_{PD}K_{VCO}\tau_2}{\tau_1+\tau_2}\left(s+\frac{1}{\tau_2}\right)}{s^2+\left(\frac{1+K_{PD}K_{VCO}\tau_2/N}{\tau_1+\tau_2}\right)s+\frac{K_{PD}K_{VCO}}{N(\tau_1+\tau_2)}} = N\frac{\omega_n\left(2\zeta-\frac{N\omega_n}{K_{PD}K_{VCO}}\right)s+\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$$

$$= N\frac{K_{DC}\left(\frac{\tau_2}{\tau_1+\tau_2}\right)\left(s+\frac{1}{\tau_2}\right)}{s^2+\left(\frac{1+K_{DC}\tau_2}{\tau_1+\tau_2}\right)s+\frac{K_{DC}}{\tau_1+\tau_2}}$$

$$= N\frac{K_{DC}\left(\frac{\tau_2}{\tau_1+\tau_2}\right)\left(s+\frac{1}{\tau_2}\right)}{s^2+\left(\frac{1+K_{DC}\tau_2}{\tau_1+\tau_2}\right)s+\frac{K_{DC}}{\tau_1+\tau_2}}$$

$$Natural \text{ Frequency}: \omega_n = \sqrt{\frac{K_{PD}K_{VCO}}{N(\tau_1+\tau_2)}}$$

$$Damping \text{ Factor}: \zeta = \frac{\omega_n}{2}\left(\tau_2+\frac{N}{K_{PD}K_{VCO}}\right)$$

$$Error \text{ Function}: E(s) = \frac{s\left(s+\frac{N\omega_n^2}{K_{PD}K_{VCO}}\right)}{s^2+2\zeta\omega_n s+\omega_n^2}$$

Second-Order Type-1 PLL Tracking Response

Phase Step Response

$$\lim_{s \to 0} \left(\frac{\Delta \Phi}{s} \right) (sE(s)) = \lim_{s \to 0} \frac{\Delta \Phi s \left(s + \frac{N\omega_n^2}{K_{PD}K_{VCO}} \right)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = 0$$

Again, phase error should be zero with a phase step

Frequency Offset (Step)

$$\lim_{s \to 0} \left(\frac{\Delta \omega}{s^2} \right) (sE(s)) = \lim_{s \to 0} \frac{\Delta \omega \left(s + \frac{N\omega_n^2}{K_{PD}K_{VCO}} \right)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\Delta \omega}{K_{DC}}$$

 A second-order type-1 PLL will still lock with a phase error if there is a frequency offset!

Second-Order Type-1 PLL Properties

- While the second-order type-1 PLL will still lock with a phase error with a frequency offset, it is much more useful than a first-order PLL
- There are sufficient design parameters (degrees of freedom) to independently set ω_n , ζ , and K_{DC}
- The loop filter conditions the phase detector output for proper VCO control
- Loop stability needs to be considered for the second-order system

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter

 Note, this type of loop filter is typically used with a chargepump driving it. Thus, the filter transfer function is equal to the impedance.

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter

$$F(s) = \frac{R\left(s + \frac{1}{RC}\right)}{s}$$
 DC Loop Gain Magnitude: $K_{DC} = \infty$ (ideally)

Forward Path Gain:
$$G(s) = \frac{K_{PD}K_{VCO}R\left(s + \frac{1}{RC}\right)}{s^2}$$

Transfer Function:
$$H(s) = \frac{K_{PD}K_{VCO}R\left(s + \frac{1}{RC}\right)}{s^2 + \left(\frac{K_{PD}K_{VCO}R}{N}\right)s + \frac{K_{PD}K_{VCO}}{NC}} = \frac{N2\zeta\omega_n\left(s + \frac{\omega_n}{2\zeta}\right)}{s^2 + 2\zeta\omega_ns + \omega_n^2}$$

Natural Frequency:
$$\omega_n = \sqrt{\frac{K_{PD}K_{VCO}}{NC}}$$

Damping Factor:
$$\zeta = \frac{\omega_n}{2}RC$$

Error Function:
$$E(s) = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Second-Order Type-2 PLL Tracking Response

Phase Step Response

$$\lim_{s \to 0} \left(\frac{\Delta \Phi}{s} \right) (sE(s)) = \lim_{s \to 0} \frac{\Delta \Phi s^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} = 0$$

Again, phase error should be zero with a phase step

Frequency Offset (Step)

$$\lim_{s\to 0} \left(\frac{\Delta\omega}{s^2}\right) (sE(s)) = \lim_{s\to 0} \frac{\Delta\omega s}{s^2 + 2\zeta\omega_n s + \omega_n^2} = 0$$

 A second-order type-2 PLL will lock with no phase error with a frequency offset!

Second-Order Type-2 PLL Properties

- A big advantage of the type-2 PLL is that it has zero phase error even with a frequency offset
 - This is why type-2 PLLs are very popular
- A type-2 PLL requires a zero in the loop filter for stability.
 - Note, this is not required in a type-1 PLL
- This zero can cause extra peaking in the frequency response
 - Important to minimize this in some applications, such as cascaded CDR systems

Next Time

- PLL System Analysis
 - PLL Stability
 - Noise Transfer Functions
 - Transient Response