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Agenda & Reading

 PLL Overview & Applications
 PLL Linear Model

e Phase & Frequency Relationships
 PLL Transfer Functions

e PLL Order & Type

e Reading

e Chapter 2, 3, 5, & 12 of Phaselock Technigues,
F. Gardner, John Wiley & Sons, 2005.
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PLL Block Diagram

Fref Fout = N *Fref
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[Perrott]

e A phase-locked loop (PLL) is a negative feedback system
where an oscillator-generated signal is phase AND
frequency locked to a reference signal



PLL Applications

e PLLs applications

* Frequency synthesis
o Multiplying a 100MHz reference clock to 10GHz

e Skew cancellation
* Phase aligning an internal clock to an 1/0 clock

* Clock recovery

e Extract from incoming data stream the clock frequency and
optimum phase of high-speed sampling clocks

 Modulation/De-modulation

* Wireless systems
e Spread-spectrum clocking



Forward Clock 1/0 Circuits

Multi-Channel Serial Link System

TX PLL

TX Clock Distribution
Replica TX Clock Driver
Channel

Forward Clock Amplifier
RX Clock Distribution

De-Skew Circuit
e DLL/PI
e Injection-Locked Oscillator



Embedded Clock 1/0 Circuits

Multi-Channel Serial Link System

TX Data
Channels

- ——

e

<
' RX PLL

Embedded-Clock
Systems

RX Data

4 Channels

e TXPLL

e TX Clock Distribution

e CDR
e Per-channel PLL-based
e Dual-loop w/ Global PLL &
e Local DLL/PI
e Local Phase-Rotator PLLs

e Global PLL requires RX
clock distribution to
individual channels



Linear PLL Model
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e Phase is generally the key variable of interest

e Linear “small-signal” analysis is useful for understand PLL dynamics if

* PLL is locked (or near lock)

* Input phase deviation amplitude is small enough to maintain operation in

lock range



Phase Detector
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e Detects phase difference between feedback clock and reference clock

e The loop filter will filter the phase detector output, thus to characterize
phase detector gain, extract average output voltage (or current for

charge-pump PLLS)



Loop Filter
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e Lowpass filter extracts average of phase
detector error pulses
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Voltage-Controlled Osclillator

V(t) @ out(t)

0

\
VvDD/2 VDD

a)out (t) = a)O + Aa)out (t) = 0)0 + KVCOVc (t)

e Time-domain phase relationship

Pout (t) = J‘ Ay, (t )dt = Kyeo J.Vc (t )dt

Laplace Domain Model
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Loop Divider
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e Time-domain model

> O (1)
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Phase & Frequency Relationships

Angular Frequency is the first derivative (rate of change vs time) of phase

WO _ ot

dt

t
#(t)=[o(z)dz
Consider a sinusoid u, (t) with angular frequency w,(t)and phase ¢(t)

ul(t) = Sin(a)l(t)t + ¢1(t))

e Phase Step A
#(t)=Adu(t) \//\\/‘F\\//\\/ 4
u,(t) = sin(e,(t)+ Adu(t))
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Phase & Frequency Relationships

e Frequency Step o(t)= @, + Ao
u,(t)=sin(a,t + Aat)=sin(a,t + 4,(t))

where ¢ (t)=Aat

A frequency step produces a ramp in phase
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Phase & Frequency Relationships

e Frequency Ramp sl et
u,(t)= sin@(a)o + Acz)rjd rj = sin[a)ot +A2a)t2J =sin(ayt +¢,(t))

where ¢ (t)= A7wt2

[Best] = A frequency ramp produces a quadratic change in phase
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Understanding PLL Frequency Response

e Linear “small-signal” analysis is useful for understand PLL dynamics if

* PLL is locked (or near lock)

* Input phase deviation amplitude is small enough to maintain operation in
lock range

e Frequency domain analysis can tell us how well the PLL tracks the input

phase as it changes at a certain frequency

e PLL transfer function is different depending on which point in the loop

the output is responding to
Input phase response

Dour lower BW
D= rejects
<[ BW ref noise
>
[Fischette] log(frequency)

‘VCO output response

BW
_’ _
higher BW
rejects
VCO no’ise
log(frequency)
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Open-Loop PLL Transfer Function

Phase Loop
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e Open-loop response generally decreases with frequency
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Closed-Loop PLL Transfer Function
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PLL Error Transfer Function

Phase Loop
Detector Filter VCO
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Loop
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Forward Path Determinant A, =1-0=1 e ldeally, we want this to be zero

System Determinant Azl—(—GIEIS))+O:1+ G(s) = Phase error generally increases with

N frequency due to this high-pass response
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PLL Order and Type

e The PLL order refers to the number of poles in the
closed-loop transfer function

» This is typically one greater than the number of loop
filter poles

e The PLL type refers to the number of integrators
within the loop

« APLL is always at lease Type 1 due to the VCO
Integrator

e Note, the order can never be less than the type
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First-Order PLL
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First-Order PLL Tracking Response

The PLL’s tracking behavior, or how the phase error responds to an input
phase change, varies with the PLL type

Phase Step Response " [Best]

#(t)=Aou(t) \//\\ﬂ \/\\/ g
| 4

0, (t) = sin(e,(t)+ Adu(t))

)

AD
i "

No change in frequency

The final value theorem can be used to find the steady-state phase error

Iim(@j(sE(s)): lim—2%5__g
s=>0\ § s—>0 § 4 KDC

All PLLs should have no steady-state phase error with a phase step error

 Note, this assumes that the frequency of operation is the same as the VCO
center frequency (V,,=0). Working at a frequency other than the VCO
center frequency is considered having a frequency offset (step).
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First-Order PLL Tracking Response

 Frequency Offset (Step) . [Best]
w,(t)=w, + Aw /\ % [\ /\ ¥
u,(t)=sin(a,t + Awt) =sin(a,t + ¢ (t)) Y% \/LV V
where ¢ (t)=Aat - Iy
TM'(')MTH

A frequency step produces a ramp in phase

e The final value theorem can be used to find the steady-
state phase error

Iim(A—wJ(sE(s)):lim Ao _ Ao

s—0 32 s—=0 § 4 KDC KDC

e With a frequency offset (step), a first-order PLL will lock
with a steady-state phase error that is inversely
proportional to the loop gain
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First-Order PLL Issues

e The DC loop gain directly sets the PLL bandwidth
* No degrees of freedom

e In order to have low phase error, a large loop gain is
necessary, which implies a wide bandwidth

« This may not be desired in applications where we would like to filter
input reference clock phase noise

e First-order PLLs offer no filtering of the phase detector

output
« Without this filtering, the PD may not be well approximated by a

simple Ky factor
* Multiplier PDs have a “second-harmonic” term
» Digital PDs output square pulses that need to be filtered
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Second-Order Type-1 PLL
w/ Passive Lag-Lead Filter
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Second-Order Type-1 PLL

w/ Passive Lag-Lead Filter
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Second-Order Type-1 PLL Tracking Response

e Phase Step Response

0)2
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Again, phase error should be zero with a phase step

e Frequency Offset (Step)
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e A second-order type-1 PLL will still lock with a phase error if
there is a frequency offset!
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Second-Order Type-1 PLL Properties

e While the second-order type-1 PLL will still lock
with a phase error with a frequency offset, It Is
much more useful than a first-order PLL

e There are sufficient design parameters (degrees of
freedom) to independently set o, {, and Ky

e The loop filter conditions the phase detector
output for proper VCO control

e Loop stability needs to be considered for the
second-order system

28



Second-Order Type-2 PLL
w/ Passive Series-RC Lag-Lead Filter
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e Note, this type of loop filter is typically used with a charge-
pump driving it. Thus, the filter transfer function is equal

to the impedance.
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Second-Order Type-2 PLL
w/ Passive Series-RC Lag-Lead Filter
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Second-Order Type-2 PLL Tracking Response

e Phase Step Response

Iim(A—cDj(sE(s)): lim AP’ =0

50\ S 520 8 + 20 S+ @

Again, phase error should be zero with a phase step

e Frequency Offset (Step)

. (Aw ; A
lim| ~—~ (sE(s))=1 -
Sl_r)‘(‘)]( 52 j(s (S)) sI—I;rO] 52 + 2§a)n3 + a)r?

e A second-order type-2 PLL will lock with no phase error with
a frequency offset!
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Second-Order Type-2 PLL Properties

e A big advantage of the type-2 PLL Is that it has
zero phase error even with a frequency offset

e This is why type-2 PLLs are very popular

e A type-2 PLL requires a zero in the loop filter for
stability.
* Note, this is not required in a type-1 PLL

e This zero can cause extra peaking in the
frequency response

* Important to minimize this in some applications, such
as cascaded CDR systems
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Next Time

e PLL System Analysis
e PLL Stability
* Noise Transfer Functions
e Transient Response
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