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Time-to-digital converters (TDC) support the industry wide trend
of replacing mixed-signal functionality by digital realizations.
High-resolution TDCs [1] become increasingly popular for time-of-
flight measurements, full-speed testing, e.g., jitter measurement,
clock and data recovery, measurement and instrumentation, and
digital PLLs. As the speed leverage of technology scaling decreas-
es below 100nm, robust TDCs with sub-gate-delay resolution are
essential. The Vernier TDC [2] requires long delay lines, thus suf-
fers from large latency, area and power consumption. Latency and
a resolution limited by the inherent variation-related pulse-width
modification are the drawbacks of the pulse-shrinking approach
[3]. Parallel gradual-delay elements [4] are particularly suscepti-
ble to process variations. The same holds for analog operations on
time intervals like delay amplification [5]. Ultra high-resolution
TDCs [6] achieve sub-ps resolution but require iterative conver-
sion. 

A local passive interpolation TDC (LPITDC) [7] is shown in Fig.
30.5.1. Coarse delay resolution is achieved with a differential
delay line. Sub-gate-delay resolution is accomplished by passive
interpolation of 2 signals with the same switching direction but
one inverter delay skew. Both the delay line and the interpolators
are inherently monotonic. Salicide blocked poly resistors do not
cause process overhead and provide best linearity. Thermal noise
causing kT/C noise at the comparator inputs is negligible for sig-
nal slopes in the order of the gate delay. Several actions have been
taken to provide a robust design: Differential sense amplifiers with
large input devices (to minimize mismatch) are used as compara-
tors. History effects from prior conversions are eliminated by the
precharge. Comparators and delay elements are supplied by sepa-
rate power networks and placed in separate wells. This assures
undisturbed signal propagation in the delay line even if the stop
signal starts to propagate in the clock tree of the comparators. The
local wiring of the delay elements is shielded to avoid cross-cou-
pling.

Delay variation and also nonlinearity increase with sqrt(N) where
N is the number of delay elements. N is limited by a loop structure.
The start impulse is injected via the multiplexed input of the first
delay element. For matching reasons, all other delay cells have a
second dummy input. The time when the loop is closed is chosen to
capture the start signal safely. No signal out of the delay line is
used to control the multiplexer, as this would introduce irregular-
ity and compromise linearity. For the same reason, there is no
interpolation between the splitter and the first inverter. Instead,
the stop signal is delayed, so the start signal is injected deep into
the chain even for small time intervals. The resulting offset error
is compensated digitally.

The classical approach to cope with global process variations is the
use of a DLL to tune the delay elements. However, this requires
analog overhead and yields only a factor of sqrt(2) in linearity. The
high resolution of the LPITDC enables digital compensation of
global process variations. The free-running frequency of the delay
line can be used as a process monitor to disable a subset of the
comparators for nominal and fast process conditions.

For absolute time measurement calibration, i.e., gain correction is
required, e.g., during calibration cycles. The measurement results
of the TDC can then be normalized digitally to the full-scale value.
The measurement of timing ratios, e.g., phases or duty cycles,
requires no calibration. The monotonic conversion characteristics
of the LPITDC allow for digital nonlinearity compensation.
Therefore, an on-chip calibration circuit characterizes the convert-
er. The correction words may be stored and added to the output

word of the TDC. Figure 30.5.2 shows the implemented calibration
circuit in detail. A characterization pulse is delayed in 2 delay lines
and serves as both start and stop signal. The start delay line has
a fixed delay whereas the stop delay can be changed. For coarse
delay tuning, additional buffers are inserted; fine delay tuning is
achieved by a chain of current-starved inverters where the gate
potential of the header and footer devices can be controlled. To
map the TDC output word to an absolute time interval the chains
can be configured as ring oscillators. During a time period deter-
mined by a stable reference clock the number of periods of both
oscillators is counted. With these counter values the delay differ-
ence, i.e., the time interval can be calculated. For offset character-
ization, the same signal is applied to the start and the stop input.
For compensation the resulting value is subtracted from all fur-
ther measurements.

The measured converter characteristics of a 7b LPI delay chain
without digital nonlinearity correction are shown in Fig. 30.5.3.
The circuit is implemented in a 90nm standard CMOS process
with 4× interpolation. The resolution is 4.7ps at 1.2V and 3.9ps at
1.4V supply. The intrinsic monotony indeed translates into a strict
monotonic converter characteristics. An integral nonlinearity of
±1.2 LSB and a differential nonlinearity of ±0.6 LSB are achieved.
Beside the linearity, the single-shot precision is an important met-
ric to describe the time resolution capability. It is defined as the
standard deviation of the codewords at the output if a constant
time interval is measured repeatedly. Figure 30.5.4 shows the
mean output values and the single-shot precision for repeated
measurement of a fine granular delay sweep. The histograms
(dashed line indicates mean value) illustrate how the output sta-
tistics changes for increasing time intervals. For repeated meas-
urements of slowly varying signals, the finite single-shot precision
dithers the output values, so averaging of multiple measurements
results reduces the quantization error, i.e., increases the effective
resolution. These results, especially the strict monotony, suggest
that an even higher resolution is achievable by an increased inter-
polation factor. For an operation frequency of 180MHz at 1.2V, the
supply current is 3mA corresponding to an energy of
19pJ/measurement. 

In low-cost applications with simple clock generators, clock jitter
limits the effective resolution of picosecond TDCs. An active jitter-
compensation technique is shown in Fig. 30.5.5. A tracking unit
determines the actual jitter and corrects the output of the main
TDC. Therefore, the clock period is continuously measured by the
auxiliary TDCs. A digital LPF  eliminates jitter and calculates the
average clock period. The difference of the actual and the average
period is integrated to obtain the correction word. As the jitter is
actually measured, no prerequisites on the jitter statistics are
required. For a 10psrms long-term jitter of the reference clock, the
presented TDC limits the error to ±1LSB.

Figure 30.5.6 gives a comparison with previously published TDCs.
Among the variation-robust TDCs, the best resolution with low
area and power consumption is achieved. The on-chip calibration
allows for accurate testing on digital standard testers, adaptation
to environmental conditions and aging.
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Figure 30.5.1: Local passive interpolation TDC in loop structure. Figure 30.5.2: On-chip TDC characterization and calibration unit.

Figure 30.5.3: Measured TDC characteristics and non-linearity plots.

Figure 30.5.5: Reference-clock jitter compensated TDC. Figure 30.5.6: Comparison with prior-art.

Figure 30.5.4: Measured single-shot precision.
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Figure 30.5.7: Chip micrograph.
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