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A Unified Model for Injection-Locked
Frequency Dividers
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Abstract—Injection-locked frequency dividers (ILFDs) are ver-
satile analog circuit blocks used, for example, within phase-locked » f(vo)
loops (PLLs). An important attribute is substantially lower power
consumption relative to their digital counterparts. The model
described in this paper unifies the treatment of injection-locked
and regenerative systems. It also provides useful design insights
by clarifying the nature and role of the nonlinearity present in
many mixer-based frequency conversion circuits. The utility of the
model is demonstrated in the calculation of both the steady-state . L
and dynamic properties of ILFD systems, and the subsequent of the ILFD are controllable by the amplitude of the injected
computation of the corresponding phase noise spectrum. lllustra- signal. Attention is paid throughout to the acquisition of design
tive circuit examples show close correspondence between theoryinsight.
and simulation. Finally, measurement results from a 5.4-GHz
divide-by-2 ILFD fabricated in 0.24-um CMOS show close
correspondence between experiment and theory.
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Fig. 1. General model for a free-running oscillator.

Il. UNIFIED MODEL FOR THEINJECTION-LOCKED OSCILLATOR

Index Terms—CMOS analog integrated circuits, frequency di- Ir? this section, we first.discuss _the CEI.S? Of_ a free-running
viders, injection locking, locking range, loop bandwidth, oscilla- Oscillator, followed by an introduction to injection-locked os-

tors, phase noise, phase-locked loops (PLLS). cillators. The attributes and weaknesses of some recently pub-
lished models are considered before introducing a new unified
model for injection-locked oscillators. As will be seen, a focus
on system behavior in the weak injection regime provides im-
NJECTION-LOCKED frequency dividers (ILFDs) areportant general insights into the operation of ILFDs.
analog circuit blocks that are useful in phase-locked loops
(PLLs), among others, because they can consume much le&g-Running Oscillator
power than conventional digital implementations. The ILFDs A general model for an oscillator is given in Fig. 1. It con-

considered here fall under the broader class of regeneratiy&s of a nonlinear gain blogkand a linear filtetH (jw). The
frequency conversion circuits. Traditionally, a distinction hagter can be implemented any number of ways, such as with a
been drawn between injection-locked [1]-[3] and regenerati¥gscadedRC [2] or LC network [3]. Let us assume that the os-
systems [4]-[6]. According to this tradition, injection-lockedillator operates at a natural oscillation frequengy and that
systems are free-running oscillators which lock in phagge filter H (jw) suppresses frequencies far fram. Let us call
and frequency to an injected input signal, while regeneratiyige steady-state output of the oscillategy.

systems do not free-run; they require an injected signal toprovided thatf is a memoryless function, we can express it
produce an output. Previous theoretical treatments overlook #€a polynomial series of the form

deep link between these two types of systems. It is also often oo
difficult to extract circuit design insights from many models. flvo) = Z G 1)
The model presented in this paper subsumes into a single =0

treatment most circuits which accomplish frequency conversi%q1ere the coefficients,, of the polynomial are constant. To
m .

bY division. It identifies the role_ of t.he nonlingarity of mosranalyze the steady-state solution of the free-running oscillator,
mixer-based frequency conversion circuits. This model is thgp, iy oke the Barkhausen criterion [12], which states that the
gsed for calculating both the steady-;tate and dyngm|c pmpﬁ'régnitude of the loop gain should be one, while the phase of
ties of ILFD systems. The phase noise spectrum is compurmg loop gain should be a multiple @fr. Assume that, is

using these results, and some illustrative circuit examples HRusoidal of the form, = Vo, cos(wyt + ¢). Harmonics of

prov_ided at the _end to provide experimental support for the th(s}-V are generated as, is operated on by. Substituting fow,
oretical predictions of the model.

_ It is shown that within itg., (1) and expressing the result as a Fourier series, we obtain
locking range, the ILFD behaves much like a PLL. One impor-

tant difference is that the loop bandwidth and the locking range ~ products= f(Vo cos(wnt + ¢))

oo
= Z Cn(Vo) - cos(mwnt + mep). 2)
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Fig. 2. Common model for the injection-locked oscillator [3]. I

resent the gain of at the frequencwy. Assuming the filter

H(jw) suppresses all frequency components other than those at (a)
wn, we can write the magnitude and phase conditions around

the loop as follows:

|C1[ - [H (jwn)| =Vo 3

and — vo @ w;/2

e
wherek is an integer. Note that phase shift introduced fby v @ wp o
can only be 0 orr, depending on the sign af;,. The phase

condition expressed in (4) states that the phase contributed by

H(jw) atwy must be zero (o), modulo2r. By contrast, we (b)

shall see later that the allowable phase shift contributed by tﬁs 3. Two injection-locked oscillator topologies.

nonlinearity f in an injection-locked oscillator is a function of
the injected signal.

/Cy + LH(jwy) = 2km 4)

If, for some integersn andn, |mwo + nwy| = we, then the
N . . corresponding output terms in (6) will exist at the frequency of
Injection-Locked Oscillator: Model 1 (Adler) oscillationwo . When these terms are combined, the outpuyt of
Injection-locked oscillators track the phase and frequency gés a resulting phase shift with respect to the input signal. Un-
an impressed signal. The output frequengy of the oscillator |ike the free-running oscillator, the phase shift introduced sy
may be the input frequency; itself, or a submultiple or har- not restricted to 0 or, and instead depends upon the strength of
monic ofw;. It may not necessarily be equalday, the oscil- jnjection and the input frequency. To compensate for the extra
lator’s natural oscillation frequency in the absence of an injectglase shift due to the injection, the phase shift contributed by
signal. The mechanism of injection-locking for a small injecte@lj(jw) must change so that the net phase around the loop re-
signal has been well described by Adler [1]. A simple, populghains2kx. The loop changes the frequency of oscillation to ac-
model which has been used to describe injection-locked oscillgmmodate the phase condition. This mechanism thus enables
tors is shown in Fig. 2 [3]. In this model, the two inputsand  the oscillator frequency to track;. When the input frequency
vo simply add before being operated on by the nonlineafiity ); is too large H (jw) cannot adjust and injection locking fails.
The nonlinearity is needed both for amplitude stability and {8 detailed derivation of the locking range based on this model
enable frequency mixing. This model gives particularly usefias been provided in [3], and shows that failure to satisfy either
design insight when the model is a direct physical representge loop gain or loop phase condition can prevent locking.
tion of the circuit. In such circuits, the input and output signals As alluded to earlier, the model given in Fig. 2 is most useful
are summed and the result passes through a nonlinearity. fhi&those circuits which have a one-to-one correspondence with
linear filter H (jw) suppresses all frequencies far fram, the jt, that is, those in which the output and injected signals are ac-
frequency of oscillation. tually summed in the circuit, and subsequently pass through the
We are interested in the frequency range over which the gfgnlinearity. One such circuit topology is shown in Fig. 3(a).
cillator can track the injected signal. To compute this lockingowever, in other cases, such as Fig. 3(b), the model becomes
range, we again apply the Barkhausen criterion, just as in angss physically meaningful. In fact, the latter circuit behaves
lyzing the free-running oscillator. As before, we can expressmuch like a single-balanced mixer, in which multiplies with

as a polynomial series, this time of the form vo due to the action of the differential pair. In such cases, we
o should change the nature of the nonlinearity in our model so
F(ur + o) Z am - (v7 +v0)™ (5) thatwe may get further design insight. We can then identify the

important parameters upon which the performance of the ILFD
depends and design an optimized circuit.

m=0

Letvp = Vo cos(wot + ¢) andvr = Vr cos(wrt). In this case,
the products off are given by [3] Injection-Locked Oscillator: Model 2 (Miller)

Miller [4] proposed regenerative frequency conversion cir-
o oo cuits which, in the absence of an injected signal, do not oscil-
_ Z Z . COS(nwyt) cos(mwot + ). (6) late. N(-%ver.theless, we can modell the injection—locked oscillator

shown in Fig. 3(b) with a generalized Miller-type model [2], as

products= f(v; + vo)

m=0 n=0
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Fig. 4. Miller-type model for the injection-locked oscillator [2].

shown in Fig. 4. Assume that the linear filtB(jw) filters out v; @ w; —p roducts Hei
all frequencies other than,, the frequency of forced oscilla- p frrvo)] P )
tion.

Note that we now have two memoryless nonlinear function
f and g, which could represent nonlinearities inherent i
practical approximations to pure multipliers, for example. Thlg 5 G | model for the inection-locked oscill
output of the mixer in the figure is of the forfh- g. Here, the 0>~ ©eneralmodeliorthe injection-locked oscillator.
functiong could model the transconductor in a single-balanced
Gilbert-type mixer, which produces an RF current riding on Bomwo . For injection-locked oscillators, a convenient function
dc current. In the absence of an RF current, the bias current W@iPresenting’ is
still allow the oscillator to free-run if there is sufficient loop

> Vo@(DO

gain. Since the transconductor may not be linear, harmonics of flur, vo) = Z am(vr) - V. (10)
the injected signal may exist at the outpuyoimodeled as m=0
o Using a Taylor series expansionaf around a dc pointy,,
g(vr) =" by -0} (7)  f can be written as
n=0
If the function f models the differential pair in the Gilbert ex- f(v;, vo) = Z w
ample, its action could be represented as n=0 n'
f(UO) = Z Am 'Ug' (8) . Z W am(U[) ’Ug . (11)
m=0 m=0 T vr=Vac

Now letvo = Vo CQS(th + @) andvy = Vj COS(‘*’I@; The The expression in (11) applies specifically to functions of the
output of the mixer is then given by a product of Fourier seriegrm (10). Let us assume that the magnitude of the injection is
weak compared to the static bias point, ig.js closeVy.. In

products= £ - g this case, we only consider terms with< 2 in (11)

= Z B, cos(nw;t)] o0
n=0 f(vI; VO) = Z am(vdc) . Ug + (UI - Vdc)
e} m=0
. Z Ay, cos(mwot +me) | . 9) oo
m=0 > am(Vae) - vf | (12)
In (9), the coefficientd3,, are functions of the input amplitude m=0
V7 only, while 4,,, are functions of the output amplitudg,. Where
We can then determine which products lie.at. The locking 9
range calculation for such a general system will be very similar am(Vae) = . m (V7)
I or=Vae

to that shown in [2]. While this model is quite general, and pre-
dicts the existence of sub- and superharmonic injection locking.the derivative.
it has its limitations. Specifically, the mixing of spectral com- Tne first partial sum term in (12) is similar to (1) for the

ponents suggested by (9) might not be quite accurate, becayigg_running oscillator. The second partial sum is due to the in-
the coefficientsA,, and B,, could be functions of botfr, and jection. For more accuracy, higher order terms can be added.

V7 in practice. The coefficients:,,, and their derivatives can be determined ei-
I . _ . ther from the analytical form of or extracted by measuring
Injection-Locked Oscillator: Model 3 (Unified) the effect of slight perturbations on the nonlinearity about the

To derive a more general model for the injection-locked oscibias pointVy.. As we shall see in Sections V and VI, if the
lator, consider the block diagram shown in Fig. 5. Let us assumenlinearity is memoryless, these coefficients give us all the
that f is a memoryless nonlinear function of bathandvo. As  information needed for a complete description of the behavior
before, the linear filteH (jw) rejects frequency components faof an injection-locked oscillator about a bias point. If beth
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andvg are sinusoidal of the form; = V. + Vi cos(wrt) and  we. Let us use the Barkhausen criterion to write the steady-state
vo = Vo cos(wot + ¢), the full output of (11) can be written asmagnitude and phase expressions at the frequepcy

0o \% )" 1+I€2+1€2—|—2k +k cos(M +2]€]€C082M
f(’l)[, 'UO)ZZ M \/ 0 1 ( 0 1) ( (ﬂ) ok1 ( (p)

n! . v
=0 JH(jwo)l = =27 (16)
|A4]
— " (k1 — ko) sin(M¢) ,
— ap, \% t ™. (13 b LH =2k 17
3 o] Goustort o). () atan | |+ thtio) =)
where
By taking advantage of the associativity of addition, we can re- N .
group terms to express the bracketed quantity in (13) as a sum ko = ViAnm—1 and &, = VIAM-H.
of harmonics ofvp 241 24,
oo N Both of these important relationships need to be satisfied to sup-
f(vr, vo) = Z M port locking. To find the full locking range of an ILFD, we find
n=0 n! the frequency of the injected signal where either (16) or (17)
fails. To derive a simplified analytical expression for the locking
- " A ; 14 range, let us suppose that there is sufficient gain around the loop
’ Z_O vy cos(mwot +mep) | . (14) such that (16) is always satisfied. In such cases, the locking

vr=Vae range isphase limitedand is thus determined solely by (17).
Let us also suppose that the amplitude of the oscilldtigioes

not change much ag, changes. Thereforel, and A . re-

main constant as well. In this special case, the locking range can
be computed directly from (17). For small frequency deviations,
the phase response of the filter can be linearized about the nat-
ural frequency of oscillationy as/H (jwy) = S(wp — wn),

In (14), the coefficientst,,, have been introduced. Eadh, can
be a function of all the.,,, andV,. Assuming weak injection as
in (12) and simplifying & < 2)

M8

V1, Vo) = Ay, cos(mwot +m ) o : . ;
f(vr; vo) ot (mwo ?) wheresS is a constant with dimensions of time. Assuming that
& ) |k1 + ko| < 1, we can show that
+ - Z Vi A, cos[(mwo £ wr)t + my]  (15)
2 _
m=0 1 ]Cl ]CO
|wo —wn| < | - atan (18)
S 1- (/i,l + ]i,'())2
where
54 wherekq andk; both depend oy andV;. We call this impor-
A = m tant quantity the output-referred phase-limited locking range of

Ovr |, -y, the ILFD.

In (15), we have an expression for the waveform at the output
of f. The coefficientsA,,, are functions ofz,,, and Vy, while
their derivativesd,,, are functions ofi,, andV,. Note that si-  Aside from the steady-state locking range, it is also important
nusoidal Signa|s with coefficients,,, are generated by passingo understand the dynamics of ILFDs. The transient phase be-
a solitary sinusoidal signal through the nonlinearfity;, vo), havior of an ILFD reveals much about its phase-noise filtering
while sinusoidal signals with coefficient$,, are generated by properties. We may evaluate the dynamics by considering how
passing the same sinusoidal signal throughdérévativeof the  quickly the output phase or frequency would change if we were
same nonlinearity with respect tg. Note that the first term to suddenly step the phase or frequency injected into an ILFD.
of (15) is similar to (1) for the free-running oscillator, while the Letus suppose thay = Vi +V; cos(Mwot +a) andvp =
second term shows the mixer products due to the presence oflthecos(wot + ¢) where we consider phase on both the input
injected signal. Notice if the first sum term in (15) is small, the@nd output signalsa(ande, respectively). When the system is
there may not be sufficient loop gain for oscillation in the an steady state, we can refer all the phase to the input or the
sence of an injected signal,(= V4.). This case corresponds tooutput. The output phase of the ILFD can be perturbed by two
that of traditional regenerative dividers. If there is a sufficientlgources: the phase noise of the input signal and internal phase
large gain around the loop, the oscillator can free-run evenfgise of the ILFD. Consider the following two observations.
the absence of an injected signal. The system is then whatis tral) In steady state, there is a fixed phase relationship between
ditionally referred to as an injection-locked oscillator. a ando. If a were to remain fixed ang were to deviate
Using (15), we may derive the steady-state conditions neces- slightly from its steady-state value due to internal noise,
sary for oscillation. We restrict ourselves to the case of super- it would eventually return back to its steady-state value.
harmonic locking, which is important for the study of frequency 2) If o were to step suddenly to a different value, then
dividers. Assuming that; = Mwo (whereM is a positive would eventually stabilize to a new steady-state value in
integer), we can compute the products of (15) which exist at  the absence of noise.

IIl. TRANSIENT RESPONSE OF THHLFD
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A Therefore, the expression for the output phase can be written as
u(t) Do o
= / hy(t, T)i(T) dr
< r
= / 7)ot = 7) o r(0))i(r) di. (23)
u(t) hd r(t) A(po J—0o Qmax
Here,i(7) represents the input noise current at timeDue to
the linearity of convolution, the phag€t) can be expressed as
Fig. 6. Phase response to an injected impulse of current. SN
o(t) = </ M ~u(t —7)i(T) dT) er(t). (24)

As shown in the Appendix, the transient response of the ”‘FPn
is exponential for a weak injected signal and small frequen
or phase perturbations. df, is close to the ILFDs natural fre-
quency of oscillationvy, the system has a first-order respon
with the following time constant:

1 S

erefore, the phase of a locked system behaves just as the phase
& a free-running system would behave, after passing through
a linear time-invariant system with the impulse respongé.
SThe power spectral densities (PSDs) are, therefore, related in
the following manner:
Mk — kol (19) L1 10cked(Aw) = Ly free(Aw) - |R(jAW)|2 (25)

) Lo o whereR(jAw) is the Fourier transform of(¢). Equation (25)
The same parameters that increase the phase-limited lockipgys that determination of the free-running phase noise of the
range (18) also reduce the time constant (19) of the systemy|Igp permits calculation of the phase noise of the locked ILFD.
fact, an interesting result for all ILFDs is To complete this computation, we must knet). For small
(20) perturbations, we know that the transient response of the system

is a decaying exponential, with a time constaufiven by (19).

That is, the phase-limited locking range of an ILFD is approxFor a unit step response, the recovery waveform will be given
matelyl/M times the 3-dB bandwidth of the first-order systenpy
response. This intuitively appealing result says that increasing
the frequency locking range also speeds up the divider's tran- Q(t) =u(t)*r(t) = e /7. (26)
sient performance.

1

T

|w0 — U-)N|max, phase-limited = 1/(MT)

Definingw, = 1/7, R(s) can be calculated using the Laplace

transform
IV. NOISE CONSIDERATIONS

| =

1 S
We now use the results of the previous section to derive the ®u(s) = s R(s) = s+ w,’ R(s) = s+ wy’ @7)

phase-noise spectrum of the ILFD. We first consider the SP&Gsing s = jAw in (27) and substituting into (25), we can com-

trum of a free-running oscillator, and then derive the spectrufie the PSD due to internal noise of the divider in the locked
of oscillator when it is injection locked. state

According to the Hajimiri phase-noise model for free-running Aw?
oscillators [7], the current-to-phase impulse response is given by L1, 10cked(Aw) = Ly free(Aw) -
p

ho(t, 7) = M cu(t —7) (21) Note that to this point, we have implicitly assumed no phase
Jmax noise from the input injection source, and considered only in-

whereI'(wy7) is the impulse sensitivity function (ISF) whichternal noise. We now neglect the internal phase noise and con-
captures the true time variance of the systgm., is a con- Sider only the phase noise from the input. We know that the
stant of proportionality, and(t — 7) represents a time-shiftedoutput phase of the divider tracks any small step changes in
step function [7]. In a free-running oscillator, the phase canniut phase scaled by the divide ratioV (see the Appendix).
recover if it is perturbed because there is no reference whi€he response of the system is, thus, a decaying exponential, as
defines the “correct” phase. However, for injection-locked syshown:
tems, phase will always recover in lock (Fig. 6), because a fixed Ay i
phase relationship exists between the injected signal and the Ap(t) = M (1 —-e ) :
ILFD output at any given frequency of operation.

We can compute the phase response of the ILFD starting fr
(21), replacing the step functiar(¢) with a decaying function
u(t) e 7(t), wheree indicates convolution ang(t) represents
the impulse response of a high-pass filtering function. Assume Dy(s) = A(s) - <M) ) (30)
that the ISF of the ILFD does not change substantially due to s+ wp
the presence of an injected signal. This assumption will holcherefore, if the injected signal is a noise process with PSD
generally if the injection is weak. So (21) then becomes  Lq, «.+(Aw), the output phase noise has the PSD

- I'(wot (w /M)2
oty 7) = 0T A gl

Gmax p

Nk (28)

(29)

OT[gerefore, ifa were a time-varying signal with the Laplace
transformA(s), the output phase of the divider in the frequency
domain will be

cu(t — 1) e r(t). (22) Lo, locked (Aw) = Loz,ext(Aw) : (31)
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i i Vbp
~ > as
L¢(A(,0) \frcc running phase noise
(dB) 20103(M) ~
. phase noise from input Rg Rg
~N

~N

ILFD phase noise ~ L L

~ 1
. '
filtered internal noise  _ \
. :
'

Oi)p Aw® E
I

vo = Vg cos(0gt + ¢)

Il

Since the two contributions to phase noise are generally inde: "’zl’cos(zw"t) *Inc
pendent,_they are ur_1corre|ated, and we can express the t_Ot‘v,= V; cos2oyt) | M3

phase noise as resulting from a superposition of individual noise

powers =

Fig. 7. Phase-noise spectrum of an ILFD.

Aw? Fig. 8. Schematic of the differentialC-based ILFD.

Ld),total(Aw) = Lff’yfree(Aw) ’ Aw? + w2
p

Al
w 2
Sy @ v d

+ Loz,ext(Aw) :
Notice that, just as in a first-order PLL, the internal free-running
phase noise of the ILFD is filtered with a high-pass filter, while
the noise from the external source is filtered with a low-pass
filter. The extent of the filtering depends on the pole frequency

wp. Also, wherever the internal phase noise is negligible, the i,+
phase noise of the output is dominated by the phase noise from
the input, which the output tracks with a scale factgn/2. (a)
At Aw far from w,, the phase noise of the locked oscillator _ ‘ ' AA/
approaches its free-running phase noise. Assuming that the in- time-varying amplitude
ternal free-running phase noise of the oscillator is of the form .
given in (33) [7] N if?)
- : Vsar
2 2 <+ - >
Loy prev(Aw) = —ms . /2 (33) Voar 1 Vo

Tmax 2+ Aw? : S
-if(t) | )

we can qualitatively see that the phase noise due to (32) will

appear as shown in Fig. 7. v
It should be clear that the frequeney, is analogous to the
loop-bandwidth frequency of conventional PLLs. One impor- (b)

tant difference is that this loop bandwidth can be controlled be o Identitving th inearin (i
the strength of the injected signal. Therefore, we can get largg o 'dentifying the nonlinearity (i, vo).
loop bandwidths and fast locking times for strong signals, and

low bandwidths with good source phase noise Suppression V\)’,[(pﬂe, |eading to pal’aSitiC current loss which increases with fre-
weak signals. guency. If the tail transconductor behaves nonlinearly, RF cur-

rent at higher harmonics would tend to get filtered by this par-
V. EXAMPLE 1- DIVIDE-8Y-Two LC ILED asitic capacitance. Let us assume that oth_erW|se, th|_s ce_lpacnor
does not greatly affect the transient behavior of the circuit.

To illustrate further the utility of the unified model, we now Let the nonlinearityf of Fig. 5 be that of the cross-coupled
use it to optimize the locking range of B oscillator operating pair formed by M1 and M2, as shown in Fig. 9(a). This non-
as a divide-by-two ILFD. The locking range calculated from thiinearity has two inputs;; andvo. The output is a differential
section is compared against measurements in Section VII. currentAI, which gets filtered and converted to a voltage by

Consider the circuit shown in Fig. 8, which is a familiar difthe LC tank. This voltage is then fed back to thg input of
ferential ILFD topology [3]. Assume that the ILFD is lockedf. For a given instantaneous valueigft), the ideal transfer
and oscillating at the output frequency,. An input voltage characteristic of the differential pair is shown in Fig. 9(b). As
signal of frequencw; = 2wg is injected into the tail device i;(¢) changes, this characteristic would both scale and distort.
M3, producing a drain current which consists of a dc and &rhe saturated current value would change witlt), andVsar
RF component. There is typically some capacitance at the taibuld also change. To simplify our analysis, let us assume that
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lime-varyii/g amplitude 4 Al “a_i[AI
AN if(t) # ----- 1
P l Vsar oy 9 < : Vsar > V0
T Vi ; >0 di; Vsar ; "
-i(t) | ' %’ |8
v v
(a) (b)

26

2.8 T T
<+—linear :I < saturated—" :

1
2 (QLoy+R,)

241 Vsar

22f -

LHS and RHS
[

Coefficients

0 0.5 1 1.5 2 2.5 3 35
Vo/Vsar
o 0.5 1 1.5 2 2.5 3 35
Vo/Vsar Fig. 12. Solving forl/o.
Fig. 1. Normalized coefiicients plotted versiis /Vs - Using the magnitude expression (16) and noting that=

Iy - Ay, we get
variation iniz(t) is small, so that we may neglect the minutﬁ:/ il 1RO +1
variations ofV’s . Therefore, we may approximate the charac-’ _’ 1‘ aels(Q7 + 1)
teristic of the cross-coupled pair by a piecewise linear function.

We now derive the steady-state solution for this di- - \/1 + kg + kT + 2(ko + k1) cos(2¢) + 2koky cos(4yp)
vide-by-two ILFD. Using (12), we can linearize the response (35)

of the ILFD abouti; = I4. Since we have neglected theWhere
variations in Vsar, the nonlinearity and its derivative are R
related as shown in Fig. 10. In this case, it is easy to show that b — I d ke — Ir Ay
we haved,, = I - 4, in (15). For a divide-by-two circuit, DY and ki = 2Uge Ay
we are interested in the coefficients, A;, andA; in (16) and , o
Jain design insight, let us assume that bkafhand &, are

(17). These coefficients have been calculated and are pIotteJ 9 > X |
a function ofV,/Viar in Fig. 11. small compared with 1. In this case, the output amplitude of the

The impedance formed by, Ry, andCio.q represents the oscillator remains relatively independent of the injection current

filter H (jw) in Fig. 8. This bandpass filter response can be lirfZ- W& can approximate the output amplitude as

earized and expressed as [8] Vo 2 A1 14 Rs(Q* + 1)
. H, or
H(jw) = (34) VoV I
14720 (2==2x) ol s e (QLuy + Ry (39)
N A Vsar

where H, represent the net parallel resistance across the tarte right-hand side (RHS) and left-hand side (LHS) of (36) have
at the resonant frequencyy . Note that the resonant frequencybeen plotted as a function &% /Vsar in Fig. 12. Note that the

of the tank is also the natural oscillation frequency of thiatercept of the two curves determines the final output ampli-
ILFD. Using impedance transformation, we can find thaude. If the RHS is less than 1, no solution a5 exists since
Hy = Rs(Q? + 1). Here,Q is the quality factor of the tank at there is insufficient loop gain for oscillation. From this plot, we
resonance, approximatelyy ./ Rs. see that to increase the final output amplitude of the ILFD, we
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Fig. 14. Ring oscillator ILFD.

atan (ky(1+ [

0.04f i T

1 of M1 and M2. If the devices are large, or if the frequency of

P

; . : ’ ; the injected signal is high, this loss may be significant. To alle-

002, 05 1 15 2 25 s 35 Viate this problem, we may tune out this capacitance using an
Vo IVeur inductor, as proposed by Wu [10].

Flg 13. Calculated normalized |OCk|ng range as a fUnCtiow@f‘/sAT for Vl EXAMPLE 2 D|V|DE'BY'FOUR R'NG OSC”_LATOR |LFD
ko = 0.1, 0.2, 0.3.

We next apply the new unified model to an injection-locked
can increase the bias current, reduce the saturation voltagéig oscillator. We again calculate important steady-state as well
the cross-coupled pair, or increase tQé product of the in- as transient quantities. The theoretical results will be compared
ductor at a given frequency. Note that reducingithgr for the to HSPICE simulations.
cross-coupled pair is equivalent to increasing its small-signalConsider the circuit shown in Fig. 14. This circuit is a

negative resistance. four-stage differential ring oscillator which also functions as
From (18), the phase-limited locking range for weak injectiod divide-by-four low-power frequency divider. This circuit
current o + k1 < 1) is approximately topology is the same as presented in [2]. Each inverter is

differential pair with a resistive load. All stages are identical,
except that the input signal is injected into the tail current
source of the first inverter as shown. Just as in the previous
ﬁ)éample, the input stage acts as a single-balanced mixer.

Some aspects of the analysis presented here are similar to that

lwo —wn| < ;—g-atan (k‘o (1~|—‘1413//11D>. (37)

In (37), we have used the fact thég//il < 0fromFig. 11, and
have brought the absolute value sign within the argument of t

arctangent. In Fig. 13, the relative locking range normalized b .
9 g grang ||¥[2]. However, we focus on the transient performance of the

2@ has been plotted as a function\df /Vsar for kg equal to . ' . . - .

0.1, 0.2, and 0.3. Itis clear that the locking range increases bc!g:un, using a modeling "’?pprof"“:'? S|m|Iar_ to that_used n the pre-
maximum of approximately 33% as the output amplitude grovv.s'ous example. The nonllnea_rlgy IS the dlffe_rennal_ paur W.'th
for any injection strength inputs and outputs as shown in Fig. 9(a). Since this is a ring os-

Recall from (20) that the same parameters that maximize tﬁgator operating at lower frequencies, we can assume that its

phase-limited locking range of the ILFD also minimize the time °P gainis large for'small sigrllals. and that its output ?‘mp”“‘.de
constant and improve the phase-noise properties of the ILFD." Aarge compared with the switching voltage of the differential

obtain a large locking range for the ILFD for a given bias C”'EZ; rfgirrtz\';igaceu;t'aghhlz cavsvi, (\;\;eniigsisslémaestﬁt Iti?izglgeorggl-
rent I4. and injection amplitudd;, we must keep a smad) P Py P

. . . . of the nonlinearityf as shown in Fig. 15(a). For a weak injected
for the LC tank while keeping a large output amplitude. While rrent, the output of the nonlinearifyfrom (12) can be written

this may seem contradictory, observe that to keep the output a
plitude large, we need to maximize tlie, product. Note that
QL = wyL?/Rs, so we may use large inductors constructed e

with thin metal lines. In this manner, we maintain a sn@ll J(ir, v0) = Y am(Tac) - v5

while achieving a larg€) L product. Ultimately, the desired in- m=0
ductance will be limited by practical size of the resonating ca- P = . m
pacitorC' or by the self-resonance frequency of the inductor it- + (i = Jac) - Z:O im(lac) -5 | - (38)

self. Therefore, it is in our interest to keep the “footprint” of
the spiral inductor as small as possible. While we do not nee®ence the nonlinearity itself is approximated as a switching
patterned ground shield [11] for this inductor design, since viienction in Fig. 15(a), the first term of (38) will yield a square
want smallQ and large self-resonance frequency, it does makeve with amplitudely. when a sinusoidabo is incident

the inductor performance more predictable. It is also importampon it about the static bias poin = I4.. Furthermore,

to note that injected current is generated through the devicesince the derivative of with respect ta; is also a switching
M3, as shown in Fig. 8. Some of this current is lost in the cddnction as seen from Fig. 15(b), the second term of (38) results
pacitance in the drain node of M3 or the source-coupled noitea mixing of the injected signal with another square wave
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time-varying amplitude N, 3

if(t) —g— —_
_Q\_ -if(1) X 3 1, Vo

v v
(a) (b)

d
-

<
v
-4
A

Fig. 15. Nonlinearityf(ir, vo) and its derivative.

2155

with unit amplitude. Applyingi; = Ia. + I7 cos(dwot) and
vo = Vo cos(wot + @)

215 g
f(ih 'UO) =lac - H(t) + 1 COS(4th> . H(t) 2145 >
= [Lgc + I1 cos(dwot)] - II(%). (39)

Theoretical
*  SPICE simulated]{

214
Expression (39) shows the output of an ideal single—balanc§
mixer. The mixing functiodl(#) is a square wave oscillating be-
tween—1 and 1, produced by the signa) = Vo cos(wot+ )
incident on the nonlinearity shown in Fig. 15(b). In this scenaric
we haved,, = I,. - A,, for all the Fourier coefficients in (15).
Therefore, the Fourier coefficients,, are

213.5

foyM

213f

212511

0 é 10 1‘5 2‘0 25 30
e (—=1)(m=1/2_ form = odd t (ns)
A, = mm ’ (40)
0, otherwise. Fig. 16. Transient frequency response to frequency perturbation of the ring

ILFD for various V7.
The harmonic products generated pyre filtered and ampli-
fied by H(jw), which models the low-pass filtering action of 0.05

the four amplifier stages. This low-pass behavior results froi R *
the interaction of the output impedance of each buffer with th oo \QQ&* .
input capacitance of the following stage. We assume that ti 0.08F g et Theoretical
- . . Yos : *  SPICE simulated|
filter substantially suppresses the output products of the mix ;... . . . L I
at frequencies higher than,. The low-pass filtet (jw) can _ x
be modeled by = : g«‘\‘ x
&  0.025F g //’5;
_HO 41) b \]\ : *
Hiw)= —— . =~  002F - R . R BT o= as i
(Jw) L4 1 ( % : _ :
wN 0.015 S : /\gﬁ\ 1
. Vi~
This approximation is valid as long as the number of stages 0ot —
small. This is because, for a small number of stages, the rit oo}/ /
freely runs at a frequenayy close to the dominant pole fre- 0 ; ‘ ;
0 5 5 20 25 30

quency of each stage. Therefore, the higher harmonics are w
past this pole frequency. This output is fed back to the differen-
tial pair of the first inverter, thus closing the loop. Note that themgg. 17. Transient phase response to phase perturbation of the ring ILFD for
is also one net inversion needed around the loop to allow trRsiousVr.

four-stage oscillator to free run. In (41), is the frequency of

the free-running oscillator. Each stage contributes a phase shifer's local oscillator (LO) port nonlinearity, which is the

of w/4, resulting in a total phase lag 2f around the loop (in- mechanism that makes possible division ratios greater than two.

cluding the inversion). Since we are assuming that the amplitude of the output is
If there is sufficient gain around the loop, the output amgays large enough for the mixer to switch strongly, we need to

plitude Vo is always large, even at the edge of the ILFD'gonsider only the phase-limited locking range. Assuming weak
locking range. In this case, the injection-locking dynamics afgjection, we have

determined primarily by the phase relationship around the loop
(phase limited) and, therefore, we can ignore the amplitude wN 4Ijp
lwo —wn| < — - atan (42)

10 1
t (ns)

expression. A large amplitude is also required to excite the 2 1574
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Fig. 18. Die photo of the 5.4-GHEC divide-by-two fabricated in 0.24-m

CMOS.
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Fig. 20. Phase noise spectrum of the ILFD for various injected powers.
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Fig. 19. Output-referred double-sided locking range as a function of inplitg. 21. Output power as a function of injected power.
power.

L step is 12 MHz and the ILFD is a divide-by-four, both the the-
We can_also calculate the characteristic time constant of thissical and simulated curves converge to the same frequency
ILFD using (19) as step of 3 MHz. The small error is due to the pure switch ap-
proximation of the differential pair, and the small-signal injec-
tion assumption. In Fig. 16, it is interesting to note that for the
weakest injected signal with; = 10 mV, the ILFD does not
SPICE simulations of a 212-MHz divide-by-four ring oscillatotrack the 12-MHz step in frequency. In this case, both simula-
ILFD are shown in Fig. 16. The device models used for simtion and theory [(47)] predict that the output “beats.” This oc-
lation were for a 0.24:m CMOS process. The transient outputurs when the phase condition cannot be satisfied and the oscil-
frequency response to a 12-MHz step change in injected fiator cannot lock on to the injected signal. As a result, the output
guency is shown for various injected voltage amplitudes. Tl the ILFD has signals with two different frequencies present.
discrete points show the cycle-to-cycle instantaneous frequer@ye is the ILFD’s own oscillation frequency, and the other is
of the ILFD, computed at the zero crossings. The solid linéom the injection source. Since these two frequencies are not
are the theoretically predicted curves, computed using (47), the same, they heterodyne together to create output beats.
more exact expression for the transient response. To numericallyig. 17 shows the transient output phase response for an ILFD
calculate the theoretical curves, we only need to know the apperating atuy for various injected amplitudes and for a step
plitude and frequency of the injected signal, the bias current aimdnput phase ofr/16. The output phase changes exponentially
transconductance of the nMOS into which it is injected, and tlaad stabilizes at /64. Once again, the discrete points show the
oscillation frequencwy . ForV; = 100 mV andV; = 30 mV, cycle-to-cycle instantaneous phase of the ILFD, while the solid
the simulated frequency response looks exponential, and thiwees are the theoretical predicted curves, computed using (47).
retical and simulated plots are similar. Since the input frequen€he two sets of curves correspond closely.

1514,
~ 43
’ S8wnIrF (43)
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Mini-Circuits
ZFM - 150 Mixer o FTER
HP 83732B ,
. FSK Sig. | ILFD | FSK Sig. HP 54542A
Signal - I"@52GHz | DUT [ @2.7 GHz Oscilloscope
Generator
LO @ 2.69 GHz

HP 8648C Signal Generator
Fig. 22. Experimental setup to test the transient performance of the ILFD.

100 T T
VIl. M EASUREMENTS -

Measurements were performed on a 5.4-GHz divide-by-tvy !

ILFD, shown in Fig. 18, which was fabricated in Nationax
Semiconductor's standard 0.24n CMOS process. The E‘ 4o0f
topology of the oscillator was the same as shown in Fig. § |

Fig. 19 shows the change in locking range as a function oftg

60

injected power. The 5.4-GHz injected signal was provided 5 Injected Power 150Ktz
an HP 83732B signal generator. The output spectrum of t—% ~20f '2‘;‘;‘;‘“

ILFD at 2.7 GHz was observed using an HP 8563E spectrié .  ///; | 77 50 dBn“:

analyzer. The measured input reflection coefficiSint of the % oS e -20 dBm

entire experimental setup (chip, package, and board) was be(s» -~
than —15 dB at around 5.4 GHz. A 50-resistor was placed =~ ™

near the gate of the injection device (M3 in Fig. 8) on the chi| -10g; s - - v s 55
Care was taken to minimize all package and board parasiti time (us)

The theoretical (single-sided) locking range was calculateg). 23. Typical recovered FSK waveforms after noise averaging (mean
using (18), then multiplied by a factor of two to yield theadjusted to zero).

double-sided locking range. The quality factor and inductance
of the on-chip inductor were known. The characteristics of the The dynamic frequency response of the ILFD was de-

differential pair were det.ermined from simulations. It is cleggrmined by injecting a frequency shift keying (FSK) signal,
that th? measureql Ipckmg range Co”esponds closgly 10 Whtered around 5.4 GHz, from a signal generator (HP 83732B).
theoretical phase-limited locking range according to.Flg. 19. The sinusoidal output of the ILFD, centered around 2.7 GHz,
We know from (20) that the output-referred locking-rangg a5 downconverted to 10 MHz with a commercially available
quantity is closely related to the dynamic behavior of the dig;, o1 (Mini-Circuits ZFM-150) operating with a 2.69-GHz LO
vider. Noting thatM s 2, we observe .that the OUtpUI'refﬁrregignal. The downconverted IF signal was fed into a data-cap-
double-sided locking range is approximately equaktor( fturing scope through a buffer, as shown in Fig. 22. From

in hertz. The quantity- is the characteristic time constant o . T
the system defined in (19), ang- is identified in (32) asop. o_bserv_lng th_e cycle-to-cycle frequency count of the _rgcovered
sinusoidal signal, the frequency response of the divider was

T.hereforeg_up/27r ShO.UId be approximately equal to the dOUblec_ietermined. This response was another FSK signal, modified
sided locking range in hertz.

Fig. 20 shows the measured output phase noise spectrun?)é he properties of the divider. Due to substantial phase noi§e
the ILFD as a function of various injected powers. Note that the fmeasuremetr;t setfup, thedrec?vcre]rec'i:gEK ;lgn;allhwgs notl)sy.
the curves eventually converge at high frequencies. This is t &grz oreo,l a hum ?; 0 p(;arlo sho t € signal had to be
oretically predicted by (32). The presence of the injected sigriglded and averaged to reduce the noise.

tends to high-pass filter the free-running phase noise of the osF19- 23 shows the rising edge of the recovered waveform for

cillator. The strength of the injected signal determines filter suﬁifferent injected powers. The mean frequency of waveform in

pression and cutoff frequenay». Comparing Figs. 19 and 20, he figure was_shifted to zero for convgnience. The peak-to-peak
note the similarity betweenp /27 and locking range for cor- frequency variation of the refergnce signal was 300 kHz. As ex-
responding injected power levels. For sufficiently large pow®ected, the peak-to-peak variation of the output frequency of the
levels, the free-running phase noise is greatly suppressed and i was 150 kHz, which is within its locking range, even at
close-in phase noise of the divider settles to a valuleg()/) —60-dBm injection. For relatively strong injection, the divider
below the phase noise of the reference source. tracks the input signal closely. Note that the injected FSK wave-
Recall that an important assumption underlying our phasérm from the signal generator has a second-order (or higher)
noise derivation is that the output oscillation amplitude of thgsponse, resulting in the peak and ripple-like behavior for the
divider does not change substantially in the presence of an inpt#0-dBm injected signal. However, as the injection strength
signal. Fig. 21 shows the change in output power as a functisnlowered, the response of the divider slows down, and the
of injected power for this particular circuit. Note that it does nqtlot looks like an exponential. By taking the Fourier transform
change greatly, implying that the unified model should providaf such plots, and by treating the response for #29-dBm
valid predictions here. injected signal as the clean reference, we can deconvolve the
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properties of a large class of practical injection-locked systems.
The expressions yield greater design insight than do previously
published models. The model has also been used to demon-
strate that injection-locked systems and regenerative systems
are essentially the same. The model also shows that within its
locking range the ILFD has many PLL-like characteristics. It
tracks the phase of the injected signal, acts as a low-pass filter
for the phase noise from the source, and suppresses its own in-
ternal phase noise within its effective loop bandwidth. This loop

i Pt . @p/27 = 600 kHz bandwidth is closely related to the locking range of the ILFD.
et 7  One important difference between ILFDs and PLLs is that the
loop bandwidth of the ILFD is controllable by the amplitude of
05 ; i i ; the injected signal. This is a useful result, since for the same
° ® ! w’f 2 ** .+ ILFD,we can geta large loop bandwidth and fast locking times

Fig. 24. Extractingep for —55 dBm injected power.
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Fig. 25. Value ofvp /27 extracted from measurements versus theory.

slow responsé{ (jw) of the divider for different injected power atan
levels. We know that the response of a first-order low-pass filter

with unity dc gain is of the following form:

for strong signals, and low bandwidths with good source phase
noise suppression with weak signals. Another major advantage
is that ILFDs potentially consume much less power than entire

PLLs, since they are just oscillators. When utilized as a prescalar
in the feedback path of a PLL working as a frequency synthe-

sizer, the ILFD can also potentially consume much less power
than its digital counterpart, particularly at higher frequencies.

APPENDIX
DERIVATION OF THE CHARACTERISTIC TIME CONSTANT

Phase Step Response

Let the natural frequency of oscillation hey. Assume
that att = 07, vy = Vi + Vicos(Mwot + ap) and
vo = Vocos(wot + ¢p). Assume also thal; is weak
compared td/y. and thatV, does not change significantly due
to small phase or frequency perturbations. For small variations
of frequency abouby (i.e., Aw), the phase response Bf(jw)
can be linearized ag H(jw) = S(w — wy). The phase
condition around the loop yields

(k1 = ko) sin(Mpo — o)
1+ (k1 + ko) cos(Mo — ap)

+S(wo—wN) = 2km.

(46)
At t = 0T, suppose that the input phase steps to a fixed value

) jw ap + Aag. The output phase gradually changes in response.
H(jw) = 1/<1 + E) . (44)  Assume that the instantaneous phase at the outputis Agp.
The instantaneous frequency at the outputis-dA p/dt. With
Therefore the stated assumptions, the dynamic response of the system is
1/ HGO)? =1+ 0/ . (45) entirely governed by the phase condition. The phase condition

yields the general expression

By plotting |1/H (jw)|? versusw?, computing the best least-
squares linear fit, and calculating the slope, we can extract

for each power level. An example plot fer55-dBm injected
power is shown in Fig. 24. This procedure was carried out for
several injected power levels. Fig. 25 shows the extracted and
theoretical values abp /27 plotted versus input power. Noting
thatw, = 1/7, the theoreticalvp was calculated using (19)'Assuming thatM Ay — Aay is always small, and using (46),
Figs. 19 and 25 are expected to be nearly identical; they are, gx: get the following expression:

perimentally and theoretically, over the given input power range.

(kl — ko) Sin(M(pg — g+ MAQD — AO[Q) :|
14 (k1 + ko) cos(Mpg — ag + MAp — Aay)

+S <wo + a Ap — wN> = 2kw. (47)

dt

(k‘l — k‘g)[k‘l + k‘o + COS(MQOQ — Olo)]
[(k1—ko) sin(Moo—ap)]? +[14 (k1 +ko) cos(Mpg—ap)]?
This paper presented a new model which allows the accu-
rate determination of the steady-state, transient, and phase-noise

VIIl. CONCLUSION

(MAp — Aayg) —I—S%A(p ~0. (48)
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Equation (48) is a linear first-order differential equation whoseg10]
time constant may appear complicated initially. If we assume

thatwo = wy, from (46) we getM ¢y — g = nw, wheren is
any integer. Substituting into (48), we get [11]

L (k1 — ko)

I —— [12]
S 1+ (k1 + ko)l

(MAp — Aap) + %A(p ~0. (49)

If k1 —ko andS are both either positive or negative, then we geta
stable solution for even. If not, then an odd value of gives us

a stable solution. Notice that the time constant could be sligh?’
different depending on the initial phase condition. However,
we assume that the injection is weak, thent- kg < 1. If we
consider only stable phase solutions, then notice that the ph
of the solution recovers with approximately the time constant

S
—. 50
kl_k(] ( )

1
T=—
M

Note that the output phase recoverssip+ Aag/M in steady
state.

Frequency Step Response

Let us now consider what happens when we step the inp
frequency by a small amount. Expression (47) is still applicab
here, withA«( now a linear ramp in phase. We can differentiati
(47) with respect to time to find the output frequency respon
of the system. Rather than show the full analysis here, let
make some simplifications. Assume that the frequency step
not large compared to the ILFD’s locking range, so thiah o —
Ay always remains small. Let us also assume that= wy .

In this case, we can take the derivative of (49) to find that the
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