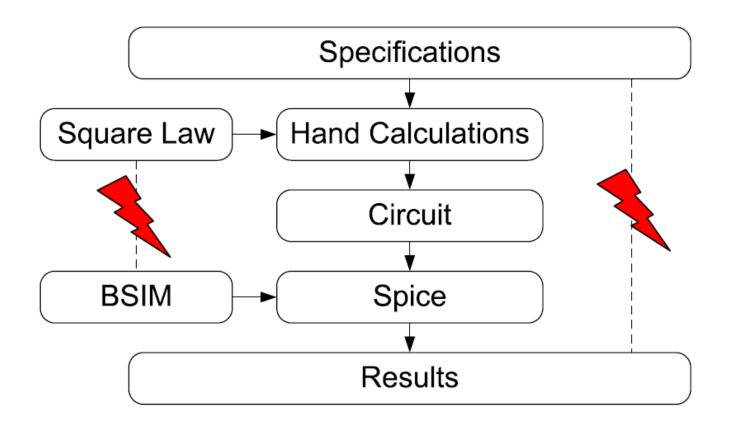
ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 7: Table-Based (g_m/I_D) Design

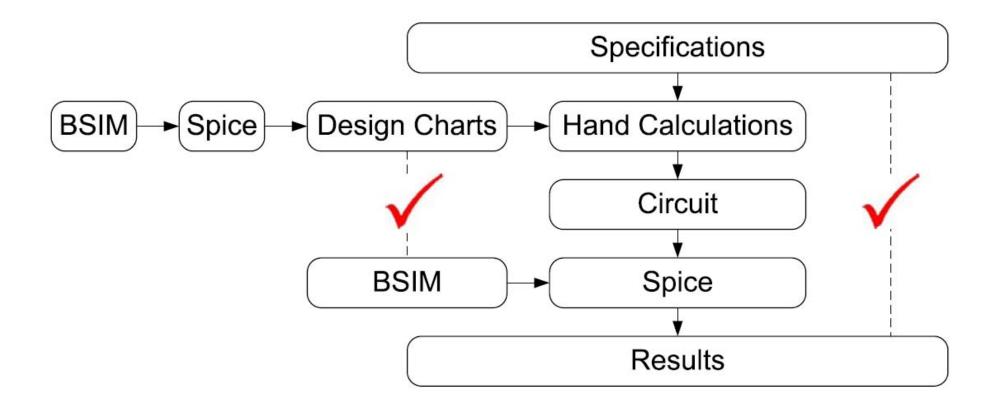
Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements & Agenda


- Reading
 - g_m/I_D paper and book reference on website
 - Material is only supplementary reference

- Technology characterization for design
- Table-based (g_m/I_D) design example
- Adapted from Prof. B. Murmann (Stanford) notes

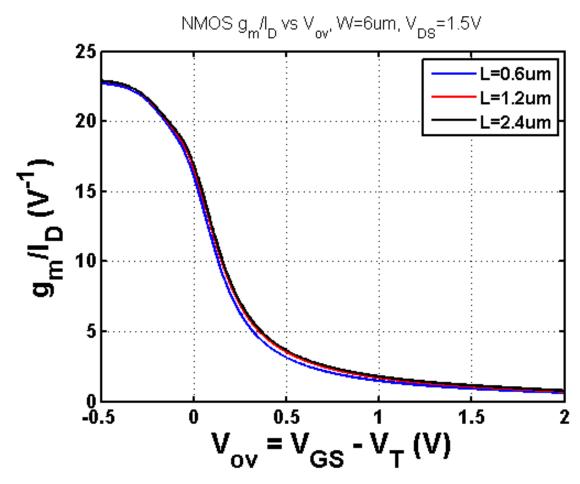
How to Design with Modern Sub-Micron (Nanometer) Transistors?


- Hand calculations with square-law model can deviate significantly from actual device performance
 - However, advanced model equations are too tedious for design
- Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
 - "Spice Monkey" approach
- How can we accurately design when hand analysis models are way off?
- Employ a design methodology which leverages characterization data from BSIM simulations

The Problem

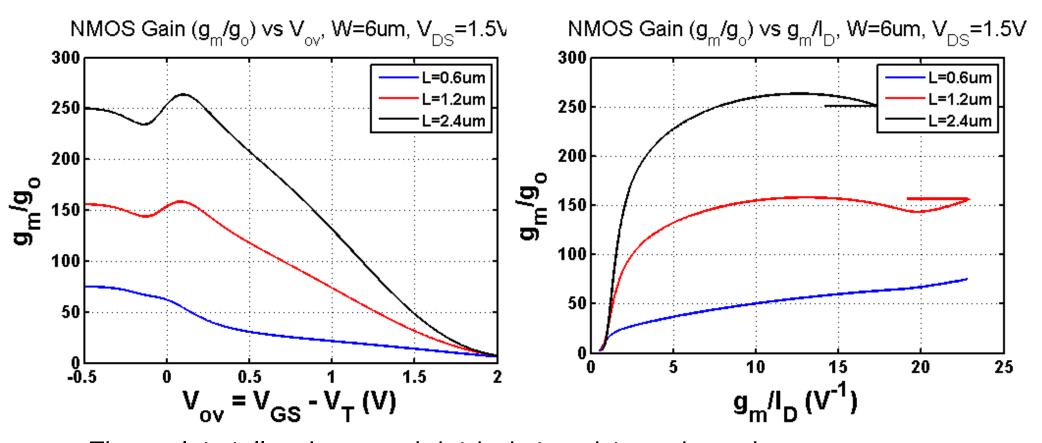
[Murmann]

The Solution

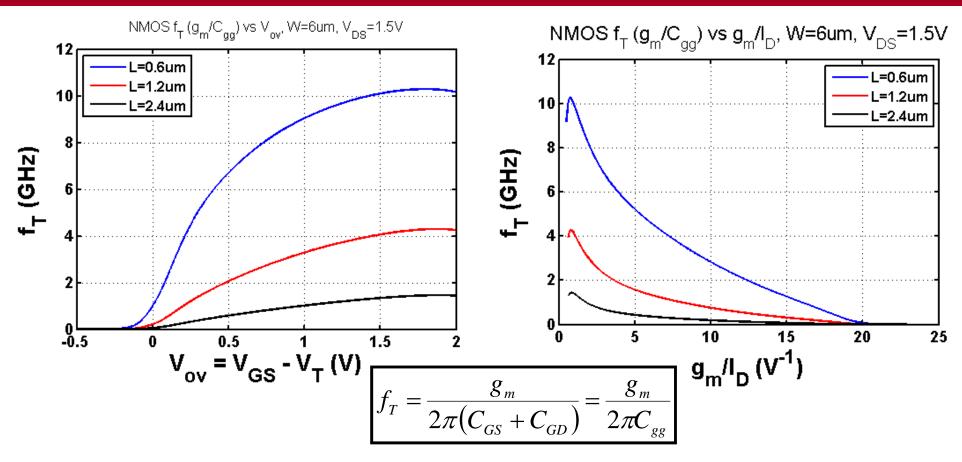


[Murmann]

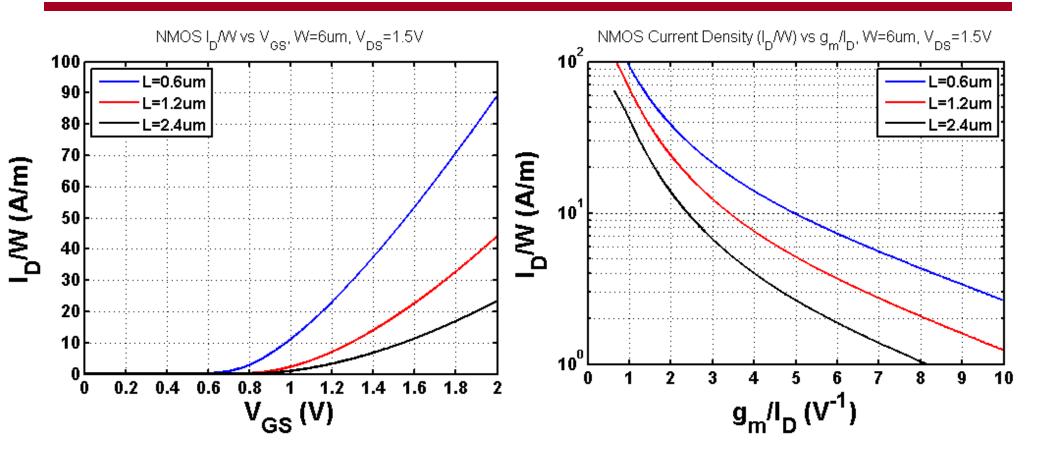
Technology Characterization for Design


- Generate data for the following over a reasonable range of g_m/I_D and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_{ds})
 - Current density (I_D/W)
- Also useful is extrinsic capacitor ratios
 - C_{gd}/C_{gg} and C_{dd}/C_{gg}
- Parameters are (to first order) independent of transistor width, which enables "normalized design"
- Do design hand calculations using the generated technology data
- Still need to understand how the circuit operates for an efficient design!!!

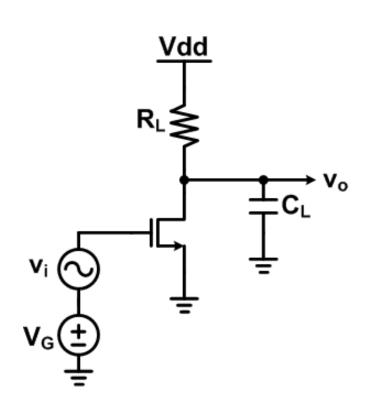
g_m/I_D


- These plots tell us how much transconductance (g_m) we can get for a given current (I_D)
- The transistor is a more efficient transconductor at low overdrive voltages
- A main trade-off will be the transistor frequency response (f_T)
- We will use g_m/I_D as the reference axis to compare other transistor parameters

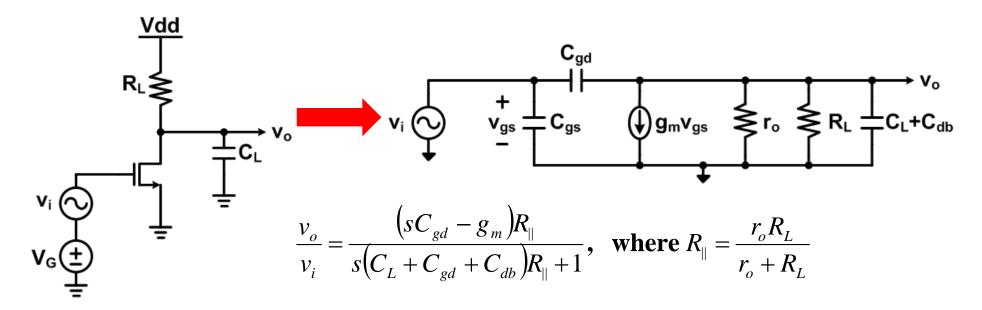
Intrinsic Transistor Gain (gm/go)


- These plots tell us how much intrinsic transistor gain we have
- The transistor has higher intrinsic gain at lower overdrive values due to the output resistance decreasing faster than the transconductance increases at higher current levels
- Plotted vs gm/ID shows that a after a certain minimum level, the transistor gain is somewhat flat

Transit Frequency, f_T


- The transit frequency is defined as the frequency when the transistor small-signal current gain goes to unity with the source and drain at AC grounds
- Overall, the ratio of gm to Cgg comes up often in analog circuits, and is a good metric to compare the device frequency response (speed)
- Transistor fT increases with overdrive voltage and high fT values demand a low gm/ID
- If you need high bandwidth, you have to operate the device at low efficiency

Current Density, ID/W


- Ultimately, we need to know how to size our devices to get a certain current
- The current density of a transistor increases with increased VGS or overdrive voltage
- High gm/ID requires low current density, which implies bigger devices for a given current

CS Amplifier Design Example

- Specifications
 - 0.6μm technology
 - $|A_v| \ge 4V/V$
 - $f_u \ge 100MHz$
 - $C_L = 5pF$
 - Vdd = 3V

CS Amplifier Small-Signal Model (No R_S)

$$\omega_z = \frac{g_m}{C_{gd}}$$
 (located at very high frequency, $> \omega_T$)

$$\omega_{p} = -\frac{1}{R_{\parallel}(C_{L} + C_{gd} + C_{db})} \approx -\frac{1}{R_{L}C_{L}}$$

$$A_{\nu} = -g_{m}R_{\parallel} \approx -g_{m}R_{L}$$

$$\omega_{u} = A_{\nu}\omega_{p} \approx \frac{g_{m}}{C_{L}}$$

Design Procedure

- 1. Determine g_m from design specifications
 - a. ω_u in this example
- 2. Pick transistor L
 - a. Short channel \rightarrow high f_T (high bandwidth)
 - b. Long channel \rightarrow high r_0 (high gain)
- 3. Pick g_m/I_D (or f_T)
 - a. Large $g_m/I_D \rightarrow low power$, large signal swing (low V_{ov})
 - b. Small $g_m/I_D \rightarrow high f_T$ (high speed)
 - c. May also be set by common-mode considerations
- 4. Determine I_D/W from I_D/W vs g_m/I_D chart
- 5. Determine W from I_D/W
- Other approaches exist

1. Determine g_m (& R_L)

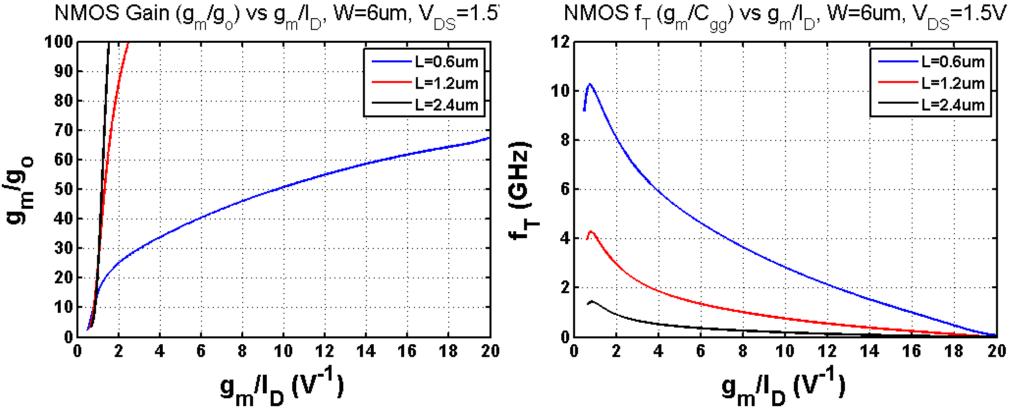
• From ω_{u} and DC gain specification

$$\omega_u = A_v \omega_p \approx \frac{g_m}{C_L}$$

$$g_m = \omega_u C_L = 2\pi (100MHz)(5pF) = 3.14mA/V$$

Note, this may be slightly low due to neglecting $C_{\rm gd}$ and $C_{\rm db}$

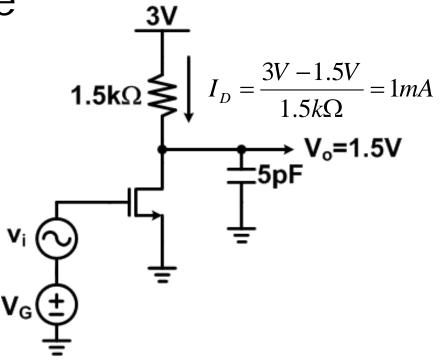
$$A_{v} = -g_{m}R_{\parallel} \approx -g_{m}R_{L}$$


$$R_{L} = \frac{A_{v}}{g_{m}}$$

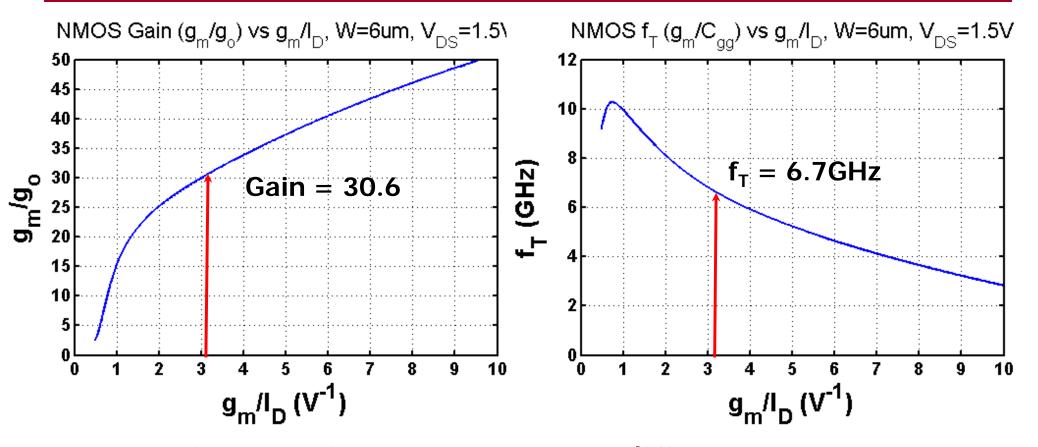
Adding 20% margin to compensate for r_0 effects

$$R_L = \frac{A_v}{g_m} = \frac{4.8}{3.14 mA/V} = 1.5 k\Omega$$

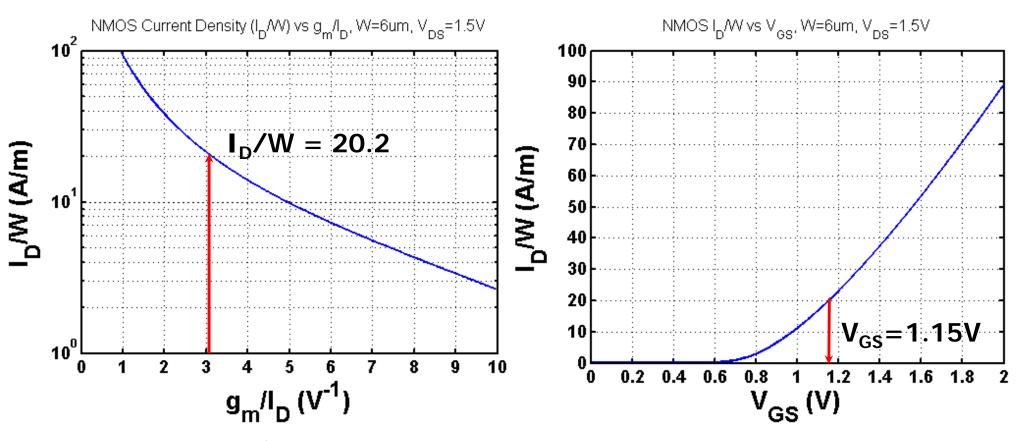
2. Pick Transistor L


Need to look at gain and f_T plots

- Since amplifier $A_v \ge 4$, min channel length (L=0.6µm) will work with $g_m/I_D \sim >2$
 - Min channel length provides highest f_T at this g_m/I_D setting


3. Pick g_m/I_D (or f_T)

• Setting I_D for $V_O=1.5V$ for large output swing range

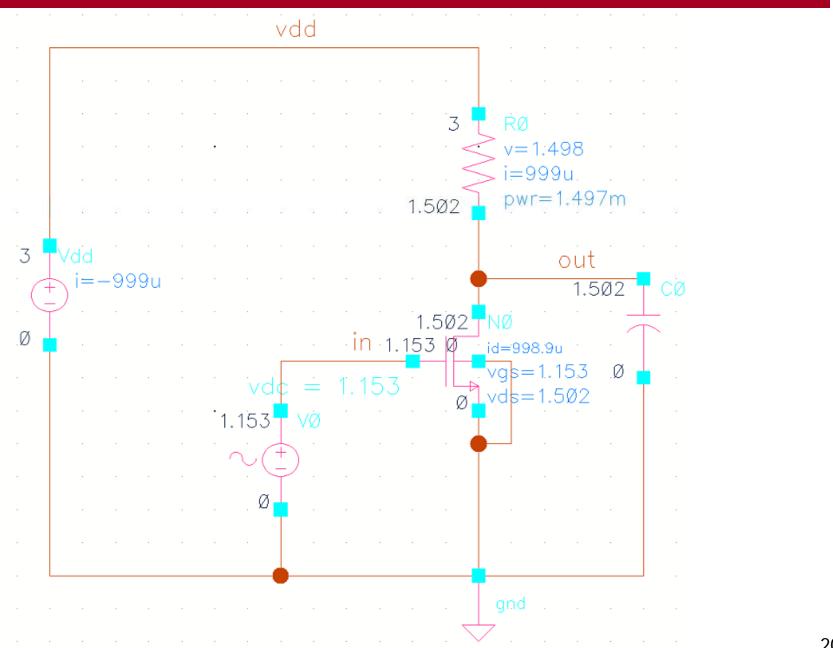

$$\frac{g_m}{I_D} = \frac{3.14 mA/V}{1 mA} = 3.14 V^{-1}$$

Verify Transistor Gain & f_T at g_m/I_D Setting

- Transistor gain=30.6 >> amplifier A_v≥4
- Transistor $f_T=6.7GHz >> amplifier <math>f_u=100MHz$
- g_m/I_D setting is acceptable

4. Determine Current Density (I_D/W)

- g_m/I_D=3.14V⁻¹ maps to a current density of 20.2μA/μm
- Verify current density is achievable at a reasonable V_{GS}
- $V_{GS}=1.15V$ is reasonable with $Vdd=3V \& V_{DS}=1.5V$


5. Determine Transistor W from I_D/W

From Step 3, we determined that I_D=1mA

$$W = \frac{I_D}{(I_D/W)} = \frac{1mA}{20.2\,\mu\text{A}/\mu\text{m}} = 49.5\,\mu\text{m}$$

- For layout considerations and to comply with the technology design rules
 - Adjust 49.5μm to 49.2μm and realize with 8 fingers of 6.15μm
 - This should match our predictions well, as the charts are extracted with a 6µm device
 - Although it shouldn't be too sensitive to exact finger width

Simulation Circuit

Operating Point Information

N0:betaeff	9.97E-03
N0:cbb	2.48E-14
N0:cbd	-1.28E-17
N0:cbdbi	5.56E-14
N0:cbg	-8.56E-15
N0:cbs	-1.63E-14
N0:cbsbi	-1.63E-14
N0:cdb	-4.26E-15
N0:cdd	1.25E-14
N0:cddbi	-5.56E-14
N0:cdg	-2.87E-14
N0:cds	2.05E-14
N0:cgb	-1.42E-14
N0:cgbovl	0
N0:cgd	-1.25E-14
N0:cgdbi	5.07E-17
N0:cgdovl	1.26E-14
N0:cgg	7.41E-14
N0:cggbi	4.90E-14
N0:cgs	4 7 4 5 4 4
140.063	-4.74E-14
N0:cgsbi	-4.74E-14 -3.49E-14
N0:cgsbi	-3.49E-14
N0:cgsbi N0:cgsovl	-3.49E-14 1.26E-14
N0:cgsbi N0:cgsovl N0:cjd	-3.49E-14 1.26E-14

		Design Value
N0:csg	-3.68E-14	J
N0:css	4.32E-14	
N0:cssbi	3.07E-14	
N0:gbd	0	
N0:gbs	1.03E-10	
N0:gds	1.02E-04	
N0:gm	3.13E-03	3.14mA/V
N0:gmbs	7.64E-04	0.4.0.4.1
N0:gmoverid	3.131	3.14V ⁻¹
N0:i1	9.99E-04	
N0:i3	-9.99E-04	
N0:i4	-8.00E-14	
N0:ibd	-8.00E-14	
N0:ibs	0	
N0:ibulk	-8.00E-14	
N0:id	9.99E-04	1mA
N0:ids	9.99E-04	
N0:igb	0	
N0:igcd	0	
N0:igcs	0	
N0:igd	0	
N0:igidl	0	
N0:igisl	0	
N0:igs	0	
N0:is	-9.99E-04	
N0:isub	0	
N0:pwr	1.50E-03	

N0:qb	-5.03E-14
N0:qbd	-9.46E-14
N0:qbi	-5.03E-14
N0:qbs	0
N0:qd	-3.72E-15
N0:qdi	-8.10E-15
N0:qg	8.07E-14
N0:qgi	7.06E-14
N0:qinv	4.20E-03
N0:qsi	-1.21E-14
N0:qsrco	-2.66E-14
N0:region	2
N0:reversed	0
N0:ron	1.50E+03
N0:type	0
N0:vbs	0
N0:vdb	1.502
N0:vds	1.502
N0:vdsat	3.91E-01
N0:vfbeff	-9.65E-01
N0:vgb	1.153
N0:vgd	-3.49E-01
N0:vgs	1.153
N0:vgsteff	5.00E-01
N0:vth	6.53E-01

Total Cgate = Cgg = 74.1fF

Total Cdrain = Cdd + Cjd = 12.5fF + 55.6fF = 68.1fF

Total Csource = Css + Cjs = 43.2fF + 0fF = 43.2fF

AC Response

- Design is very close to specs
- Discrepancies come from neglecting r_o and C_{drain}
- With design table information we can include estimates of these in our original procedure for more accurate results

Next Time

Single-Stage Amplifiers Frequency Response