
Sam Palermo
Analog & Mixed-Signal Center

Texas A&M University

Lecture 2: MOS Transistor Modeling

ECEN474/704: (Analog) VLSI Circuit Design 
Spring 2018



Announcements

• If you haven’t already, turn in your 0.18um 
NDA form ASAP

• Lab 1 starts Jan 31

• Current Reading
• Razavi Chapters 2 & 17

2



Agenda

• MOS Transistor Modeling
• Physical Structure
• Threshold Voltage, VT

• DC I-V Equations
• Body Effect
• Subthreshold Region
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NMOS Physical Structure
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CMOS Physical Structure
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Threshold Voltage, VT

• Before a “channel” forms, the device acts as 2 series caps from the 
oxide cap and the depletion cap

• If VG is increased to a sufficient value the area below the gate is 
“inverted” and electrons flow from source to drain
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[Razavi]

• Applying a positive voltage to the gate repels holes in the p-substrate 
under the gate, leaving negative ions (depletion region) to mirror the 
gate charge
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VT Definition

• The threshold voltage, VT, 
is the voltage at which an 
“inversion layer” is formed
• For an NMOS this is when the 

concentration of electrons 
equals the concentration of 
holes in the p- substrate
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[Silva]

Note,  will be defined later



MOSFET in Accumulation Mode
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[Silva]

• If a negative gate voltage is applied w.r.t. the source, then positive 
charge “accumulates” below the gate

• In this Accumulation Mode, no current flows and the device is often 
used as a capacitor with the drain shorted to the source

• This capacitor consists of parallel plate capacitance below the gate and 
overlap/fringing capacitance near the drain/source regions

ovoxeffaccG WCCWLC 2, 



MOSFET in Inversion Mode
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[Silva]Subthreshold
0<VG<VT

VDS>0

Triode/Linear
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Small VDS

Saturation
VG>VT

VDS>VGS-VT

N-type transistor

Subthreshold

Linear region

Saturation

VDS

IDS

VGS2
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VGS1

Subthreshold (extremely low-voltage 
low-power applications)

Linear region (voltage controlled 
resistor, linear OTA’s, multipliers, 
switches)

Saturation region (Amplifiers)



MOS Equations in Triode Region (Small VDS)
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[Sedra/Smith]
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Triode or Linear Region

• Channel depth and transistor current is a function of the overdrive 
voltage, VGS-VT, and VDS

• Because VDS is small, VGC is roughly constant across channel length 
and channel depth is roughly uniform
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V(x) = Channel-
Source Voltage
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Triode Region Channel Profile
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[Sedra/Smith]

• If VGC is always above VT throughout the channel length, the 
transistor current obeys the triode region current equation

• Recall that the channel charge density is (VGC(x) - VT)

Channel-Source Voltage, V(x)
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Saturation Region Channel Profile
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[Sedra/Smith]

• When VDS  VGS-VT=VOV, 
VGC no longer exceeds VT, 
resulting in the channel 
“pinching off” and the 
current saturating to a 
value that is no longer a 
function of VDS (ideally)
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L
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Channel Voltage, V(x)



Saturation Region

• Channel “pinches-off” when VDS=VGS-VT and the current saturates
• After channel charge goes to 0, the high lateral field “sweeps” the 

carriers to the drain and drops the extra VDS voltage
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NMOS ID – VDS Characteristics
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MOS “Large-Signal” Output Characteristic
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[Sedra/Smith]
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What about the PMOS device?

• The current equations for the PMOS device are 
the same as the NMOS EXCEPT you swap the 
current direction and all the voltage polarities
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PMOS ID – VSD Characteristics
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[Karsilayan]
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Body Effect

• As VS becomes positive w.r.t. 
VB, a larger depletion region 
forms, which requires a higher 
VG to form a channel

• The net result is that VT
increases due to this “body 
effect”

• Note, it also works in reverse, 
as if you increase VB w.r.t. VS, 
then VT lowers
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[Razavi]
• If the body and source potential are 

equal, a certain VG=VT0 is required to 
form an inversion layer
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MOS MODEL: SPICE LEVEL-II

•Drain current, Triode region

•Drain Current, Saturation region

•Threshold voltage (zero bias)

•Threshold voltage

•KP and  (Spice Model)
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Subthreshold Region

• So far we have assumed that ID=0 when VGS<VT

• However, in reality an exponentially decreasing current 
exists for VGS<VT
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• VT values are often set by extrapolating above threshold 
data to current values of zero or infinite Ron

• A rough value often used is the VGS which yields 
ID/W=1A/m

1 with 1dec./60mV is slope ldsubthreshosteepest  The
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current scale a is  where
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Subthreshold Current & VT Scaling
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• This subthreshold current prevents lowering VT excessively

• Assuming VT=300mV and has an 80mV subthreshold
slope, then the Ion/Ioff ratio is only on the order of 
10^(300/80)=5.6e3

• Reducing VT to 200mV drops the Ion/Ioff ratio to near 316

• If we have a large number of “off” transistors on our chip 
these subthreshold currents add up quickly, resulting in 
significant power dissipation

• This is a huge barrier in CMOS technology scaling and one 
of the main reasons Vdd scaling has slowed



Next Time

• MOS Transistor Modeling
• Small-Signal Model
• Spice Models
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