
ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier 
 
Objective 
 
Design, simulate and test a two-stage operational amplifier 
 
Introduction 
 
Operational amplifiers (opamp) are essential components of analog system design. Integrated circuit design, 
as well as board level design, often uses operational amplifiers. This component is basically a high gain 
voltage amplifier used in many analog systems such as filters, regulators and function generators. This 
rudimentary device is also used to create buffers, logarithmic amplifiers and instrumentation amplifiers. 
Opamps can also function as simple comparators. Knowledge of operational amplifier functionality and 
design is important in analog design. 
 
The symbol for an operational amplifier is shown in Figure 8-1. The basic device has two inputs and a 
single output. A fully differential version of the opamp has two outputs and is often used in high 
performance integrated circuit designs. 
 

 
Figure 8-1: Operational Amplifier Symbol 

 
The operational amplifier functions as a voltage amplifier. The relationship between the input and output 
voltage is given by: 
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The amplifier has a high voltage gain (Av0 > 1000 for CMOS opamps). Due to the high gain, the linear 
region of an opamp is very narrow, so the opamp is commonly used in a negative feedback loop. Figure 8-
2 illustrates the typical input-output characteristic tor an operational amplifier used with and without 
feedback. The open loop (without feedback) plot shows the linear region is only a few millivolts wide. 
From Figure 8-2, the open loop input-output characteristic is clearly nonlinear. Notice the closed loop linear 
region consists of almost the entire input voltage range. The application of feedback reduces the non-
linearity, but also reduces the voltage gain. 

 
Figure 8-2: Input-Output Characteristic for an Opamp 

 
The simplest operational amplifier is the simple differential amplifier studied earlier. This amplifier can be 
improved by adding a second stage as an inverting amplifier with a current source load. The two stage 
amplifier shown in Figure 8-3 is referred to as a Miller Opamp. 
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Figure 8-3: Two-Stage Miller Opamp 

 
The Miller Opamp has a low frequency gain of: 
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The transconductance is given by: 
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The output resistance is given by: 
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Design Description 
 
The two-stage amplifier can be modeled as a cascade of two amplifiers, as illustrated in Figure 8-4. The 
first stage is a differential amplifier, which produces an amplified version of the difference in input signals. 
This stage determines the CMRR, slew rate and other performance specifications determined by the 
differential amplifier. 
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Figure 8-4: The Two Stage Operational Amplifier Model 
 
The second stage is an inverting amplifier. The purpose of this stage is to provide a large voltage gain. The 
gain stage and the input stage create two poles, which affect the stability of the feedback system. Usually 
some form of compensation is required to assure the amplifier is stable at unity gain. Additional gain stages 
can be employed to increase the gain, but this degrades stability and requires complex compensation 
techniques. 



The frequency response of an operational amplifier will be analyzed using the macro-model of the opamp 
shown in Figure 8-5. The capacitor Cin models the input capacitance of the opamp, which is mostly gate to 
source capacitance. The sub-circuit consisting of GmA, RA and CA model the gain and frequency response 
of the input stage. The capacitance CA includes the input capacitance of the second stage and the output 
capacitance of the first stage. The components GmB, RB and CB model the second stage. The load capacitor 
and resistor are also included in RB and CB. 
 

 
Figure 8-5: Operational Amplifier Macro-Model 

 
The transfer function of the macro-model is given by: 
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This transfer function assumes zero source resistance. Notice the two poles are approximately equal. The 
capacitors CA and CB are dominated by gate to source capacitances, and RA and RB are the parallel connected 
small-signal drain to source resistances. The pole-zero plot of this transfer function is illustrated in Figure 
8-6. 

 
Figure 8-6: Pole-Zero Diagram for Uncompensated Opamp 

 
Due to the poles being located close together and the large DC gain, the system in unlikely to be stable in 
unity-gain feedback configuration, therefore some form of compensation is required. The modified macro-
model shown in Figure 8-7 uses capacitor CC to compensate the frequency response of the opamp by 
splitting the two poles. 
 

 
Figure 8-7: Operational Amplifier Macro-Model with Compensation Capacitor CC 

 



Assuming RA is large (ܴ ൎ ܴ	and	ܴ ≫ ,ܥ) ) and CA is smallܩ/1 ܥ ≫  ), and using the resultsܥ
obtained from the inverting amplifier lab, the transfer function for the operational amplifier with the 
compensation capacitor is: 
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These simplifying assumptions hold because capacitance CB will include the capacitance of the load, and 
the compensation capacitance CC can be chosen to be the size of the load capacitor. Also, for the two stage 
opamp, capacitance CB will include the load capacitance CL. 
 
With the transfer function in factored form, we can find the open loop DC gain, poles and zero of the 
compensated opamp. They are given by: 
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Note that the addition of the compensation capacitor CC caused the poles to split. One pole moved closer to 
the origin by a factor of Av2 = GmBRB, while the other pole moved away from the origin by a factor of Av2. 
This compensation technique is called "pole splitting". The pole-zero plot of this transfer function is 
illustrated in Figure 8-8. Also, notice the creation of a zero as a result of the transition path created by the 
capacitor. 

 
Figure 8-8: Pole-Zero Plot for a Compensated Opamp 

 
Using the compensated opamp in a feedback loop produces the following transfer function: 
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where: 
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The closed loop transfer function using the compensated amplifier can be approximated by: 
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The effect of the above simplification of the system is to assume the dominant pole is at the origin. Notice 
that when the system is in open loop (β = 0), the transfer function reduces to: 
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The factor β varies the position of the dominant pole from the origin to approximately the position of the 
non-dominant pole. Figure 8-9 illustrates the effect of feedback on the frequency response. 
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Figure 8-9: Open and Closed Loop Frequency Response 

 
To assure the feedback system is stable at unity gain (β = 1), the phase margin must be examined. The phase 
margin is the amount of phase before phase inversion (180°) at the unity gain frequency. The expression 
for the phase margin is given by: 
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The phase margin is improved by moving the non-dominant pole and zero to higher frequencies away from 
the unity gain frequency. The phase margin can also be improved by using compensation techniques which 
place the zero in the left half plane. 
 
The slew rate is determined by the compensation capacitance and the tail current: 
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The performance characteristics of the two-stage amplifier are summarized below: 
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Monte Carlo Analysis 
 
Monte Carlo analysis provides an accurate and powerful method for parametric yield estimation. The 
principle of Monte Carlo analysis can be defined as the generation of circuit figure of merit distributions as 
a function of statistically varying device model parameters that accurately reflect manufacturing process 
variations. 
 
With Monte Carlo analysis, you can generate and save statistical information about a circuit's temperature 
and geometry dependent performance characteristics. The mathematics supporting Monte Carlo method 
proves that the probability distribution of the simulated results will be statistically the same as the actual 
measurements of a real circuit that has been fabricated.  
 
Follow the steps below to run Monte Carlo simulations for Av0, dominant pole, gain-bandwidth product and 
phase margin: 
 

 Schematic: Launch → ADE L 
 ADE L: Setup AC Analysis 
 ADE L: Tools → Calculator 
 Calculator: Click on vf 
 Schematic: Click on the output net 
 Calculator: Select the expression, then click on function panel for each parameter: 

o Av0: Click on “dB20”, then click on “value” with “interpolate at”=0 
o Dominant Pole: Click on “bandwidth” with “Db”=3 and “Type”=low 
o Gain-Bandwidth Product: Click on “gainBwProd” 
o Phase Margin: Click on “phaseMargin” 

 Calculator: Tools → Send Buffer to ADE Outputs (or click on )  
 ADE L: Outputs - Click on Save 



 ADE L: Simulation → Netlist and Run  (or click on ) 
 ADE L: Launch → ADE XL → Create New View → OK → OK 
 ADE XL: Run → Monte Carlo Sampling → Set options as shown in the figure below → OK 

 

 
 

 ADE XL: Wait until the analysis is complete (200 Passed/200 pts) 
 ADE XL: Click on  → Histogram → Click on the expression → plot (see below) 

 

 
 

 



Plotting Power Supply Rejection Ratio (PSRR) 
 
PSRR is a measure of the effect of power supply variation on the output voltage. To plot PSRR+, first 
determine Adm in V/V. Next, set the AC inputs of the amplifier to zero, and insert an AC source (with 
magnitude 1) between VDD and the amplifier. After running AC simulation, plot the following using the 
calculator: 
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A plot of PSRR+ is shown in Figure 8-10, mark the lowest point for the worst case scenario. Repeat this 
process with the negative rail to obtain PSRR-. 
 

 
Figure 8-10: Plot of PSRR+ 

 
Prelab 
 
The prelab exercises are due at the beginning of the lab period. No late work is accepted. 
 
Design an operational amplifier of Figure 8-3 to obtain the following specifications: 
 

Av0 > 50 dB 
CMRR > 60 dB 
GBW > 2 MHz 
PM > 45° 
Output Swing > 1 V 
Load Capacitance 30 pF 
Power Dissipated < 500 µW 



Lab Report 
 

1. Simulate the design from the prelab. Adjust the transistor sizes until all specifications are met. 
Provide plots of: 

 
 Frequency response 
 CMRR 
 PSRR+ 
 PSRR- 
 Transient response 

 
On the appropriate plot above, mark the following measurements (remember the "m":hotkey for 
marker and the "a" and "b" hotkeys for measuring slope): 

 
 Slew rate 
 Phase margin 
 Gain-bandwidth product 
 Power Dissipation 

 
2. Layout your final design using good layout techniques. Include the LVS report (with your NetID 

and time stamp). Plot and mark the simulations from part 1. Be sure to include parasitic 
capacitances in your extraction. 

 
3. Run a Monte Carlo simulation on the opamp design. Be sure to run this simulation with process 

variation and mismatch. Generate histograms of the following parameters: 
 

a) Gain-bandwidth product 
b) Dominant pole 
c) Phase margin 
d) Av0 

 
Comment on the impact of process variations and mismatch on each parameter. 
 


