ECEN326: Electronic Circuits Spring 2022

Lecture 7: Feedback

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Homework 7 due Apr 21
- Reading
 - Razavi Chapter 12

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Negative Feedback System

network, and 4) comparison mechanism.

Close-loop Transfer Function

Feedback Example

A₁ is the feedforward network, R₁ and R₂ provide the sensing and feedback capabilities, and comparison is provided by differential input of A₁.

Comparison Error

As A₁K increases, the error between the input and fed back signal decreases. Or the fed back signal approaches a good replica of the input.

Comparison Error

• What happens to the closed-loop and error transfer function as A1 $\rightarrow \infty$?

Loop Gain

When the input is grounded, and the loop is broken at an arbitrary location, the loop gain is measured to be -KA₁.

Example: Alternative Loop Gain Measurement

 Result should be the same wherever we break the loop as long as we analyze the loop in the proper signal direction

Incorrect Calculation of Loop Gain

Signal naturally flows from the input to the output of a feedforward/feedback system. If we apply the input the other way around, the "output" signal we get is not a result of the loop gain, but due to poor isolation.

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Gain Desensitization

> A large loop gain is needed to create a precise gain, one that does not depend on A_1 , which can vary by $\pm 20\%$ with process and temperature variations.

Can we make a feedback factor K with low variations?

Ratio of Resistors

- When two resistors are composed of the same unit resistor, their ratio is very accurate. Since when they vary, they will vary together and maintain a constant ratio.
- Consider the previous circuit

$$\frac{1}{K} = \frac{R_2 + R_1}{R_2} \xrightarrow{\text{w/ variations } (\alpha)} \frac{\alpha R_2 + \alpha R_1}{\alpha R_2} = \frac{R_2 + R_1}{R_2} \text{ (ideally not changed)}$$

Merits of Negative Feedback

- Bandwidth enhancement
- Modification of I/O impedances
 - Reduced sensitivity to load impedance
- Linearization

Bandwidth Enhancement

Although negative feedback lowers the gain by (1+KA₀), it also extends the bandwidth by the same amount.

Bandwidth Extension Example

As the loop gain increases, we can see the decrease of the overall gain and the extension of the bandwidth.

Example: Open Loop Parameters

Example: Closed Loop Voltage Gain

Closed-loop gain decreases by 1+KA₀ factor

Example: Closed Loop I/O Impedance – **Input Resistance**

Assuming that $R_1 + R_2 >> R_D$ $v_{out} = i_x R_D$ $v_F = \frac{i_x R_D R_2}{R_1 + R_2}$ $i_X = -g_{m1}(v_F - v_x) = g_{m1}\left(v_x - \frac{i_x R_D R_2}{R_1 + R_2}\right)$ $i_X \left(1 + \frac{g_{m1}R_DR_2}{R_1 + R_2} \right) = g_{m1}v_x$

- Input resistance
 - increases by 1+KA₀ factor $R_{in} = \frac{1}{g_m} \left(1 + \frac{R_2}{R_1 + R_2} g_m R_D \right)$
 - Same factor as the closedloop gain decreases

Example: Closed Loop I/O Impedance – Output Resistance

• Output resistance decreases by 1+KA₀ factor

• Same factor as the closed-loop gain decreases

Example: Load Desensitization

W/O Feedback Large Difference With Feedback Small Difference

$$\left(g_{m}R_{D}\rightarrow g_{m}R_{D}/3\right)$$

$$\left(\frac{g_m R_D}{1 + \frac{R_2}{R_1 + R_2}} \rightarrow \frac{g_m R_D}{3 + \frac{R_2}{R_1 + R_2}} g_m R_D}\right)$$

Linearization

(a)

- Significant distortion with large input signal
 - A₂ << A₁

 If KA₁ and KA₂ remain large, overall gain is ~ 1/K

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Four Types of Amplifiers

Ideal Models of the Four Amplifier Types

CH 12 Feedback

⊸ V_{out}

Realistic Models of the Four Amplifier Types

Examples of the Four Amplifier Types

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Sensing a Voltage

In order to sense a voltage across two terminals, a voltmeter with ideally infinite impedance is used.

Sensing and Returning a Voltage

$$R_1 + R_2 \approx \infty$$

Similarly, for a feedback network to correctly sense the output voltage, its input impedance needs to be large.
R₁ and R₂ also provide a mean to return the voltage.

Sensing a Current

Sensing and Returning a Current

Addition (Subtraction) of Two Voltage Sources

In order to add or subtract two voltage sources, we place them in series. So the feedback network is placed in series with the input source.

Practical Circuits to Subtract Two Voltage Sources

Although not directly in series, V_{in} and V_F are being subtracted since the resultant currents, differential and single-ended, are proportional to the difference of V_{in} and V_F.

Addition (Subtraction) of Two Current Sources

In order to add two current sources, we place them in parallel. So the feedback network is placed in parallel with the input signal.
Practical Circuits to Subtract Two Current Sources

Since M₁ and R_F are in parallel with the input current source, their respective currents are being subtracted. Note, R_F has to be large enough to approximate a current source.

Example: Sense a Voltage and Return a Voltage

R₁ and R₂ sense and return the output voltage to feedforward network consisting of M₁- M₄.
 M₁ and M₂ also act as a voltage subtractor.

Example: Feedback Factor

• This circuit senses a voltage and returns a current

Input Impedance of an Ideal Feedback Network

To sense a current, the input impedance of an ideal feedback network must be zero.

Output Impedance of an Ideal Feedback Network

- To return a voltage, the output impedance of an ideal feedback network must be zero.
- To return a current, the output impedance of an ideal feedback network must be infinite.

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Determining the Polarity of Feedback

1) Assume the input goes either up or down.

> 2) Follow the signal through the loop.

3) Determine whether the returned quantity enhances or opposes the original change.

Polarity of Feedback Example I

Negative Feedback

Polarity of Feedback Example II

Negative Feedback

Polarity of Feedback Example III

- If we are trying to build a linear amplifier, positive feedback is bad
- Circuit can latch up or oscillate

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Voltage-Voltage Feedback

- A voltage amplifier requires sensing of the output voltage to produce a feedback voltage
- Output voltage is sensed in parallel and feedback voltage applied in series with the input

Example: Voltage-Voltage Feedback

Input Impedance of a V-V Feedback

A better input voltage sensor, as the input impedance increases by 1+A₀K

Example: V-V Feedback Input Impedance

Output Impedance of a V-V Feedback

A better output voltage source, as R_{out} has been reduced by (1+A₀K)⁻¹

Example: V-V Feedback Output Impedance

Voltage-Current Feedback

- A transimpedance amplifier requires sensing of the output voltage to produce a feedback current
- Output voltage is sensed in parallel and feedback current applied in parallel with the input

Example: Voltage-Current Feedback

Assume
$$R_F$$
 is large $(R_F \gg R_{D2})$
 $R_0 = R_{D1}(-g_{m2}R_{D2})$
 $I_{RF} = \frac{V_{out}}{R_F + \frac{1}{g_{m1}}} \approx \frac{V_{out}}{R_F}$
 $K = \frac{I_F}{V_{out}} = \frac{-I_{RF}}{V_{out}} = -\frac{1}{R_F}$
 $\frac{V_{out}}{I_{in}} = \frac{-g_{m2}R_{D2}R_{D1}}{1 + \frac{g_{m2}R_{D2}R_{D1}}{R_F}}$

Input Impedance of a V-C Feedback

Example: V-C Feedback Input Impedance

Output Impedance of a V-C Feedback

$$V_A = -I_F R_0 = -K V_X R_0$$

Neglecting the small feedback current

$$I_X = \frac{V_X - V_A}{R_{out}} = \frac{V_X + KV_X R_0}{R_{out}}$$

$$\boxed{\frac{V_X}{I_X} = \frac{R_{out}}{1 + R_0 K}}$$

A better output voltage source, as R_{out} has been reduced by (1+KR₀)⁻¹

Example: V-C Feedback Output Impedance

Current-Voltage Feedback

- A transconductance amplifier requires sensing of the output current to produce a feedback voltage
- Output current is sensed in series and feedback voltage applied in series with the input

Example: Current-Voltage Feedback

Input Impedance of a C-V Feedback

A better input voltage sensor, as R_{in} increases by 1+KG_m

Output Impedance of a C-V Feedback

A better output current source, as R_{out} increases by 1+KG_m

Example: Current-Voltage Feedback

$$R_{D}$$

$$K_{D}$$

$$K = R_{M}$$

$$V_{DD}$$

 R_{out} expression assumes that $R_{\rm M}$ is small

Current-Current Feedback

- A current amplifier requires sensing of the output current to produce a feedback current
- Output current is sensed in series and feedback current applied in parallel with the input

Input Impedance of C-C Feedback

A better input current sensor, as R_{in} decreases by (1+KA_I)⁻¹

Output Impedance of C-C Feedback

A better output current source, as R_{out} increases by (1+KA_I)

Example: Test of Negative Feedback

Negative Feedback

Example: C-C Negative Feedback

69

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Feedback Network Loading

- In the previous examples, we made a lot of simplifying assumptions that neglect the loading the feedback network has on the amplifiers I/O ports
- However, the finite feedback network impedance may alter the overall circuit's performance
- In order to include the feedback network loading effects on the I/O impedances, the following methodology can be employed

Feedback Analysis Methodology with I/O Loading

- 1. Identify the forward amplifier
- 2. Identify the feedback network
- 3. Break the feedback network correctly
- 4. Calculate the open-loop parameters
- 5. Determine the feedback factor correctly
- 6. Calculate the closed-loop parameters
How to Break a Loop

The correct way of breaking a loop is such that the loop does not know it has been broken. Therefore, we need to present the feedback network to both the input and the output of the feedforward amplifier.

Rules for Breaking the Loop of Amplifier Types

- Sense duplicate output is loaded with the ideal input impedance of the forward amplifier
- Return duplicate input is set with the ideal output impedance of the forward amplifier

Intuitive Understanding of these Rules

Voltage-Voltage Feedback

- Since ideally, the input of the feedback network sees zero impedance (Z_{out} of an ideal voltage source), the return replicate needs to be grounded. Similarly, the output of the feedback network sees an infinite impedance (Z_{in} of an ideal voltage sensor), the sense replicate needs to be open.
 - Similar ideas apply to the other types.

Rules for Calculating Feedback Factor

- Voltage feedback: feedback network output is opened
- Current feedback: feedback network output is shorted

Intuitive Understanding of these Rules

Voltage-Voltage Feedback

- Since the feedback senses voltage, the input of the feedback is a voltage source. Moreover, since the return quantity is also voltage, the output of the feedback is left open (a short means the output is always zero).
- Similar ideas apply to the other types.

Breaking the Loop Example I

Feedback Factor Example I

Breaking the Loop Example II

Feedback Factor Example II

Breaking the Loop Example IV

82

Feedback Factor Example IV

83

Breaking the Loop Example V

For a current output with feedback, the output resistance must be obtained with the test stimulus in series

Feedback Factor Example V

Breaking the Loop Example VI

Feedback Factor Example VI

Breaking the Loop Example VII V_{DD} V_{DD} $\lambda_1 = 0$ $\lambda_2 > 0$ R_D <u>_</u>M 2 R_D≸ M_2 I_{out} l_{out} *r*₀₂ ER_{I} M_1 M_1 Device ₩ _{R_F} ≩_{R_M} (R_F P ≩*R*м R_F $I_{\rm F}$ I _{in} ≩*R*м /_{in}(Rout Eq. Circuit $= \frac{(R_F + R_M)R_D}{R_F + R_M + \frac{1}{r_{O2}}} \cdot \frac{-g_{m2}r_{O2}}{r_{O2} + R_L + R_M \parallel R_F}$ $A_{I,open}$ r_{o2} i_x1 g_{m1} + Vx $R_{in,open} = \frac{1}{2} \parallel (R_F + R_M)$ g_{m1} ⋛R_F||R_М $R_{out,open} = r_{O2} + R_F \parallel R_M$

Feedback Factor Example VII

Breaking the Loop Example VIII

Feedback Factor Example VIII V_{DD} R_D $R_{F} +$ 1₂ M_1 $\left[\right]$ -• *V*out $R_{\rm F}$ 1_{in} ER_M $K = -1 / R_{F}$ $(V_{out} / I_{in})|_{closed} = (V_{out} / I_{in})|_{open} / [1 + K(V_{out} / I_{in})|_{open}]$ $R_{in,closed} = R_{in,open} / [1 + K(V_{out} / I_{in})|_{open}]$

$$R_{out,closed} = R_{out,open} / [1 + K(V_{out} / I_{in})|_{open}]$$

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Bode Plot Algorithm - Phase

- **1.** Calculate low frequency value of Phase(H($j\omega$))
 - a. An negative sign introduces -180° phase shift
 - b. A DC pole introduces -90° phase shift
 - c. A DC zero introduces +90° phase shift
- 2. Where are the poles and zeros?
 - a. For negative poles: 1 dec. before the pole freq., the phase will decrease with a slope of -45°/dec. until 1 dec. after the pole freq., for a total phase shift of -90°
 - b. For negative zeros: 1 dec. before the zero freq., the phase will increase with a slope of +45°/dec. until 1 dec. after the zero freq., for a total phase shift of +90°
 - c. Note, if you have positive poles or zeros, the phase change polarity is inverted
- 3. Note, the above algorithm is only valid for real poles and zeros.

Example: Phase Response

Assuming general negative (left-half plane) poles and zeros, the phase of H(jω) starts to drop at 1/10 of the pole, hits -45° at the pole, and approaches -90° at 10 times the pole.

Example: Three-Pole System

For a three-pole system, a finite frequency produces a phase of -180°, which means an input signal that operates at this frequency will have its output inverted.

Instability of a Negative Feedback Loop

$$X \xrightarrow{+} H(s) \xrightarrow{} Y$$

$$\frac{Y}{X}(s) = \frac{H(s)}{1 + KH(s)} \xrightarrow{s=j\omega} \frac{H(j\omega)}{1 + KH(j\omega)}$$
If $KH(j\omega_1) = -1$, then $\frac{Y}{X}(j\omega_1) = \frac{H(j\omega_1)}{0} = \infty$

> Substitute jw for s. If for a certain ω_1 , KH(j ω_1) reaches

-1, the closed loop gain becomes infinite. This implies for a very small input signal (or inherent system noise) at ω_1 , the output can be very large. Thus the system becomes unstable.

"Barkhausen's Criteria" for Oscillation

- We want our linear amplifiers to be stable (not oscillate)
- Thus, we don't want this criteria to be satisfied

Time Evolution of Instability

Oscillation Example

This system oscillates, since there's a finite frequency at which the phase is -180° and the gain is greater than unity. In fact, this system exceeds the minimum oscillation requirement.

Condition for Oscillation

Condition for Stability

 $\succ \omega_{GX}$, ("gain crossover"), is the frequency where |KH|=1 (ω_1 above)

Stability Example I

For Stability with the worst - case feedback factor (K = 1), we need to find

the open - loop magnitude response $|H_p| < 1$ when there is a 180° phase shift

$$KH(s) = \frac{(-g_m R_D)^3}{\left(1 + \frac{s}{\omega_p}\right)^3} \quad \text{where } \omega_p = \frac{1}{R_D C_1}$$

1. Find the phase crossover frequency, ω_{PX}

$$\angle H(j\omega_{PX}) = -3 \tan^{-1} \left(\frac{\omega_{PX}}{\omega_p} \right) = -180^{\circ}$$

$$\omega_{PX} = \sqrt{3}\omega_p$$

2. The KH magnitude at ω_{PX} must be less than unity

$$\frac{\left(g_m R_D\right)^3}{\left[\sqrt{1 + \left(\frac{\omega_{PX}}{\omega_p}\right)^2}\right]^3} = \frac{\left(g_m R_D\right)^3}{\left[\sqrt{1 + \left(\sqrt{3}\right)^2}\right]^3} < 1$$

3. This implies that the low - frequency gain $g_m R_D < 2$

Stability Example II

Now the feedback factor has been reduced to K = 0.5

 $KH(s) = \frac{(0.5)(-g_m R_D)^3}{\left(1 + \frac{s}{\omega_m}\right)^3} \quad \text{where } \omega_p = \frac{1}{R_D C_1}$ 0.5 VDD ≩R_D ≷R_⊓ ≷R_D $- \prod_{m_2} M_2 + c_1 + M_3 + c_1^{\circ} V_{out}$ 1. The phase crossover frequency is the same $V_{in} \sim H_{in} M_1 \neq c_1^{l}$ $\angle H(j\omega_{PX}) = -3 \tan^{-1} \left(\frac{\omega_{PX}}{\omega_{PX}} \right) = -180^{\circ}$ 20log|*KH*| $\omega_{PX} = \sqrt{3}\omega_n$ $(g_{\rm m}R_{\rm D})^3$ 2. The *KH* magnitude at ω_{PX} must be less than unity $0.5(g_{\rm m}R_{\rm D})^3$ $\frac{(0.5)(g_m R_D)^3}{\left[\sqrt{1+\left(\frac{\omega_{PX}}{\omega_p}\right)^2}\right]^3} = \frac{(0.5)(g_m R_D)^3}{\left[\sqrt{1+\left(\sqrt{3}\right)^2}\right]^3} < 1$ $|H_{\rm P}|$ 0 ω (log scale) $R_D C_1$ ωρχ 3. This implies that the low - frequency gain 0 ω (log scale) $g_m R_D < \sqrt[3]{\frac{2^3}{0.5}} = 2.52$ -180[°]

′ Н

Un-Stable vs. Marginally Stable vs. Stable

 While the middle system is "Marginally Stable", it has a poor transient step response, in that it displays large ringing which takes a long time to die out

Phase Margin

Worst - Case PM = $\angle H(\omega_{GX}) + 180^{\circ} = -135^{\circ} + 180^{\circ} = 45^{\circ}$

Frequency Compensation

> Phase margin can be improved by moving ω_{GX} closer to origin while maintaining ω_{PX} unchanged.

Frequency Compensation Example

> C_{comp} is added to lower the dominant pole so that ω_{GX} occurs at a lower frequency than before, which means phase margin increases.

Frequency Compensation Procedure

> 1) We identify a PM, then -180°+PM gives us the new ω_{GX}, or ω_{PM}.
 > 2) On the magnitude plot at ω_{PM}, we extrapolate up with a slope of +20dB/dec until we hit the low frequency gain then we look "down" and the frequency we see is our new dominant pole, ω_P'.
 - A slope of 20dB/dec is used, as we assume that we want a PM ≥45°
Example: 45° Phase Margin Compensation

Miller Compensation

To save chip area, Miller multiplication of a smaller capacitance creates an equivalent effect.

Agenda

- Feedback Overview
- Feedback Properties
- Amplifier Types
- Sense and Return Techniques
- Feedback Polarity
- Feedback Topologies
- Effect of Nonideal I/O Impedances
- Stability
- Two-Stage Miller OTA

Two-Stage Miller OTA – DC Gain

DC Gain
$$A_{VDC} = A_{v1}A_{v2} = \left(-\frac{g_{m2}}{g_{o2} + g_{o4}}\right)\left(-\frac{g_{m8}}{g_{o8} + g_{o7}}\right) = \frac{g_{m2}g_{m8}}{(g_{o2} + g_{o4})(g_{o8} + g_{o7})}$$

 $A_{VDC} = -G_m R_{out}$
 $R_{out} = \frac{1}{g_{o8} + g_{o7}}$
 $G_m = g_{m8}A_{v1} = -\frac{g_{m8}g_{m2}}{g_{o2} + g_{o4}}$

Two-Stage Miller OTA – Frequency Response

- Stage 1 is a differential amplifier with an active load
- Stage 2 is a common-source amplifier with a large miller capacitor
- Using a Thevenin equivalent for Stage 1, we can use the common-source equations from Lecture 6

Two-Stage Miller OTA – Frequency Response

Two-Stage Miller OTA – Unity Gain Frequency

Two-Stage Miller OTA – Phase Margin

Two-Stage Miller OTA – Example

 Again, we are neglecting a right-half plane (positive) zero, which can potentially degrade the amplifier stability

$$\omega_z = \frac{g_{m8}}{C_C}$$

- This is OK, as long as C_C << C_L
- More about this in 474

Assume that for the first stage

$$g_{m2} = 0.5 \frac{mA}{V} \text{ and } r_{O2} = r_{O4} = 20k\Omega$$

and for the second stage
$$g_{m8} = 10 \frac{mA}{V}, r_{O7} = r_{O8} = 10k\Omega, \text{ and } C_L = 1pF$$

1. What should C_C be for $f_{GX} = 500$ MHz?
$$\omega_{GX} = \frac{g_{m2}}{C_C} = \frac{0.5 \frac{mA}{V}}{C_C} = 2\pi (500 \text{ MHz}) \Rightarrow C_C = 159 fF$$

2. What is f_{p1}, f_{p2} , and the phase margin?
$$f_{p1} = \frac{1}{2\pi R_{out1} g_{m8} R_{out2} C_C} = \frac{1}{2\pi (10k\Omega) \left(10 \frac{mA}{V} \right) (5k\Omega) (159 fF)} = 2$$
MHz
$$f_{p2} = \frac{g_{m8}}{2\pi C_L} = \frac{10 \frac{mA}{V}}{2\pi (1pF)} = 1.59$$
GHz
 $PM = \tan^{-1} \left(\frac{f_{p2}}{f_{GX}} \right) = \tan^{-1} \left(\frac{1.59 \text{ GHz}}{500 \text{ MHz}} \right) = 72.5^{\circ}$

Next Time

- Output Stages and Power Amplifiers
 - Razavi Chapter 14