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Lecture 6: Frequency Response



Announcements
• HW5 Due Mar 29
• Exam 2 Mar 31

• 9:35 – 11:00 (10 extra minutes)
• Closed book w/ one standard note sheet
• 8.5”x11” front & back
• Bring your calculator
• Emphasis will be on Lectures 4-6
• Sample Exam2s posted on website

• Reading
• Razavi Chapter 11
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Agenda
• Frequency Response Concepts
• High-Frequency Models of Transistors
• Frequency Response Analysis Procedure
• CE and CS Stages
• CB and CG Stages
• CC and CD (Follower) Stages
• Cascode Stages
• Differential Pairs
• Additional Examples
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High Frequency Roll-off of Amplifier 

 As frequency of operation increases, the amplifier gain 
decreases

 This lecture analyzes this frequency response issue

CH 11 Frequency Response
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Example:  Human Voice I

 Natural human voice spans a frequency range from 20Hz to 
20KHz, however conventional telephone system passes 
frequencies from 400Hz to 3.5KHz.  Therefore phone 
conversation differs from face-to-face conversation.   
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Natural Voice Telephone System
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Example:  Human Voice II

6

Mouth RecorderAir

Mouth EarAir

Skull

Path traveled by the human voice to the voice recorder 

Path traveled by the human voice to the human ear 

 Since the paths are different, the results will also be 
different.

CH 11 Frequency Response
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Gain Roll-off:  Simple Low-pass Filter

 In this simple example, as frequency increases the 
impedance of C1 decreases and the voltage divider consists 
of C1 and R1 attenuates Vin to a greater extent at the output. 
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Gain Roll-off:  Common Source

 The capacitive load, CL, is the culprit for gain roll-off since 
at high frequency, it will “steal” away some signal current 
and shunt it to ground.
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Frequency Response of the CS Stage

 At low frequency, the capacitor is effectively open and the 
gain is flat.  As frequency increases, the capacitor tends to 
a short and the gain starts to decrease.  

 A special frequency is ω=1/(RDCL), where the gain drops by 
3dB (half-power). In this single-pole circuit, this is also the 
pole frequency.

1222 


LD

Dm

in

out

CR
Rg

V
V

 

 
 

 

LD

Dm

LD

Dm

in

out

CR

Rg
CR
Rg

V
V

1
for  Solving

21

gainfrequency -low  the torelativepoint  (-3dB)power -half  thefind To
Voltage  toalproportion isPower   theRecall

2

2

22

2















10

Example:  Relationship between Frequency 
Response and Step Response
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 The relationship is such that as R1C1 increases, the 
bandwidth drops and the step response becomes slower.
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Bode Plot

 When we hit a zero, ωzj, the Bode magnitude rises with a 
slope of +20dB/dec.

 When we hit a pole, ωpj, the Bode magnitude falls with a 
slope of -20dB/dec
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Example: Bode Plot

 The circuit only has one pole (no zero) at 1/(RDCL), so the 
slope drops from 0 to -20dB/dec as we pass ωp1. 

CH 11 Frequency Response
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Pole Identification Example I
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CH 11 Frequency Response

• Circuit transfer functions can be well approximated by considering that 
if a node in the signal path has a small-signal resistance Rj and 
capacitance Cj in parallel to an AC ground, then it contributes a pole of 
magnitude (RjCj)-1

=0
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Pole Identification Example II
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Circuit with Floating Capacitor

 The pole of a circuit is computed by finding the effective 
resistance and capacitance from a node to GROUND. 

 The circuit above creates a problem since neither terminal 
of CF is grounded.

 While we could always derive the transfer function from the 
small-signal model, there is a useful “Miller’s Theorem” 
which can be used to approximate the circuit’s poles



1616

Miller’s Theorem 

 If Av is the gain from node 1 to 2, then a floating impedance 
ZF can be converted to two grounded impedances Z1 and Z2. 
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Miller Multiplication

 With Miller’s theorem, we can separate the floating 
capacitor.  However, the input capacitor is larger than the 
original floating capacitor.  We call this Miller multiplication.
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Example: Miller Theorem
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• Note, this is only a (often good) 
approximation of the transfer function
• Uses only the low-frequency gain
• Neglects a zero
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High-Pass Filter Response
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 The voltage division between a resistor and a capacitor can  
be configured such that the gain at low frequency is 
reduced.
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Example:  Audio Amplifier

nFCi 6.79 nFCL 8.39

 In order to successfully pass audio band frequencies (20 
Hz-20 KHz), large input and output capacitances are 
needed.
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Capacitive Coupling vs. Direct Coupling

 Capacitive coupling, also known as AC coupling, passes 
AC signals from Y to X while blocking DC contents.  

 This technique allows independent bias conditions between 
stages.  Direct coupling does not.

Capacitive Coupling Direct Coupling 21

Allows for high V(RD) (gain), while 
also allowing a high output stage 
gate bias for good output swing

Due to direct coupling, must 
trade-off AV1 for output stage 
biasing/swing
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Typical Frequency Response

Lower Corner Upper Corner 

22CH 11 Frequency Response

Often due to 
AC coupling

Often due to 
load/parasitic capacitors



Agenda
• Frequency Response Concepts
• High-Frequency Models of Transistors
• Frequency Response Analysis Procedure
• CE and CS Stages
• CB and CG Stages
• CC and CD (Follower) Stages
• Cascode Stages
• Differential Pairs
• Additional Examples
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High-Frequency Bipolar Model

 At high frequency, capacitive effects come into play
 C and Cje are the junction capacitances
 Cb represents the base charge to generate the non-uniform 

charge profile required for proper operation (Chapter 4)

b jeC C C  

CH 11 Frequency Response
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High-Frequency Model of Integrated Bipolar 
Transistor

 Since an integrated bipolar circuit is fabricated on top of a 
substrate, another junction capacitance exists between the 
collector and substrate, namely CCS.
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Example: Capacitance Identification

CH 11 Frequency Response



2727

MOS Intrinsic Capacitances

 For a MOS, there exist oxide capacitance from gate to 
channel, junction capacitances from source/drain to 
substrate, and overlap capacitance from gate to 
source/drain.
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Gate Oxide Capacitance Partition and Full Model

 The gate oxide capacitance is often partitioned between 
source and drain.  In saturation, C2 ~ Cgate, and C1  ~ 0.  They 
are in parallel with the overlap capacitance to form CGS and 
CGD.

CH 11 Frequency Response

Assuming bulk is 
an AC ground
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Example: Capacitance Identification

CH 11 Frequency Response
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Transit Frequency

 Transit frequency, fT, is defined as the frequency where the 
current gain from input to output drops to 1.

CH 11 Frequency Response 
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Example:  Transit Frequency Calculation
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• The transit frequency increases dramatically 
as the channel length is shrunk, allowing for 
much faster transistors with CMOS scaling

• Note, this neglects some advanced device 
physics (carrier velocity saturation) which 
slows this rate of frequency increase 
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• Frequency Response Concepts
• High-Frequency Models of Transistors
• Frequency Response Analysis Procedure
• CE and CS Stages
• CB and CG Stages
• CC and CD (Follower) Stages
• Cascode Stages
• Differential Pairs
• Additional Examples

32



33

Analysis Summary

 The frequency response refers to the magnitude of the 
transfer function.

 Bode’s approximation simplifies the plotting of the 
frequency response if poles and zeros are known.

 In general, it is possible to associate a pole with each node 
in the signal path.

 Miller’s theorem helps to decompose floating capacitors 
into grounded elements.

 Bipolar and MOS devices exhibit various capacitances that 
limit the speed of circuits.

33CH 11 Frequency Response



34

High Frequency Circuit Analysis Procedure

 Determine which capacitor impact the low-frequency region 
of the response and calculate the low-frequency pole 
(neglect transistor capacitance).

 Calculate the midband gain by replacing the capacitors with 
short circuits (neglect transistor capacitance).

 Include transistor capacitances.
 Merge capacitors connected to AC grounds and omit those 

that play no role in the circuit.
 Determine the high-frequency poles and zeros.
 Plot the frequency response using Bode’s rules or exact 

analysis.

34CH 11 Frequency Response
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Frequency Response of CS Stage
with Bypassed Degeneration – Input AC Coupling

 The input AC coupling forms a high-pass filter which should 
be designed for a certain minimum cut-off frequency

36CH 11 Frequency Response
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Frequency Response of CS Stage
with Bypassed Degeneration – Main Amplifier

 In order to increase the 
midband gain, a 
capacitor Cb is placed 
in parallel with Rs.  

37CH 11 Frequency Response
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Unified Model for CE and CS Stages

CH 11 Frequency Response
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Unified Model Using Miller’s Theorem 

CH 11 Frequency Response
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Unified Model Using Miller’s Theorem 

CH 11 Frequency Response
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Example:  CE Stage
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 The input pole is the bottleneck for speed.
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RL=2k
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Example:  Half Width CS Stage
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• LF gain, gmRL reduces by 1/2
• Assuming gmRL is still high:
• The input pole increases by ~4X
• The output pole increases by ~2x

• Constant gain-bandwidth product!
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Direct Analysis of CE and CS Stages

 Direct analysis yields different pole locations and an extra zero.
CH 11 Frequency Response

• For a detailed direct small-signal analysis, see Razavi 11.4.4
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Direct Analysis of CE and CS Stages 
w/ Dominant Pole Approximation

CH 11 Frequency Response

   
   

 outinXYoutXYinLThev

outXYLinThevThevXYLm
p

outXYLinThevThevXYLm
p

XY

m
z

CCCCCCRR
CCRCRRCRg
CCRCRRCRg

C
g











1||

1
1||

||

2

1







• p1 will be lower due to the additional term

• p2 is at a much higher frequency due to “pole splitting”
• Discussed more when we talk about stability
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Example: CE and CS Direct Analysis 
(Dominant Pole Approximation)
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Example:  Comparison Between Different Methods
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Miller’s Exact Dominant Pole
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Simple Miller theorem analysis vastly overestimates the output 
pole at a lower frequency
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Input Impedance of CE and CS Stages
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Low Frequency Response of CB and CG Stages
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 As with CE and CS stages, the use of capacitive coupling 
leads to low-frequency roll-off in CB and CG stages 
(although a CB stage is shown above, a CG stage is similar).
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Frequency Response of CB Stage

X
m

S

Xp

C
g

R 









1||

1
,

CCX 

YL
Yp CR

1
, 

CSY CCC  

Or

CH 11 Frequency Response

• No Miller effect
• Input pole is ~fT (very 

high frequency)
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Frequency Response of CG Stage
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Example:  CG Stage Pole Identification 
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Example:  Frequency Response of CG Stage 
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• Input pole is ~fT
• Output pole limits bandwidth
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Emitter and Source Followers

 The following will discuss the frequency response of 
emitter and source followers using direct analysis, as this 
circuit typically has 2 poles that are close together

 Emitter follower is treated first and source follower is 
derived easily by allowing r to go to infinity
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Direct Analysis of Emitter Follower 
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For detailed analysis, see Razavi 11.6
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Direct Analysis of Source Follower Stage

1

1

2 




bsas

s
g
C

V
V m

GS

in

out

    

m

SBLGD
GDS

SBLGSSBLGDGSGD
m

S

g
CCCCRb

CCCCCCCC
g
Ra






CH 11 Frequency Response

SBC

GD

GS

CC
CC
r










  Taking



58

Example:  Frequency Response of Source Follower
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2 Complex Conjugate Poles
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Example:  Source Follower 
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Input Capacitance of Emitter/Source Follower
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CH 11 Frequency Response
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Example:  Source Follower Input Capacitance 
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Output Impedance of Emitter Follower
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Output Impedance of Source Follower
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Active Inductor

 The plot above shows the output impedance of emitter and 
source followers.  Since a follower’s primary duty is to 
lower the driving impedance (RS>1/gm), the “active 
inductor” characteristic on the right is usually observed.   

CH 11 Frequency Response

If RS < 1/gm
(not usually true)

If RS > 1/gm
(general case)
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Example:  Output Impedance 
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Note: This neglects the 
capacitors from M1 and M2

M3 only
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Frequency Response of Cascode Stage

 For cascode stages, there are three poles and Miller 
multiplication is smaller than in the CE/CS stage.
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Poles of Bipolar Cascode
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Comparable to fT
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Poles of MOS Cascode
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Example:  Frequency Response of Cascode
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MOS Cascode Example
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• Improves output pole
• Lowers poles at nodes X and Y, but 

they should still be relatively high
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I/O Impedance of Bipolar Cascode
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I/O Impedance of MOS Cascode
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CH 11 Frequency Response

0

(Neglecting RS)



Cascode Frequency Response 
Take-Away Points
• Cascode amplifiers offer two good 

properties
• High output impedance to serve as a 

good current source and/or amplifier
• Reduction of the Miller effect and 

better high-frequency performance

• Main cost is higher voltage 
headroom to keep cascode 
transistor in saturation
• Impacts maximum output swing and 

distortion performance
74



Agenda
• Frequency Response Concepts
• High-Frequency Models of Transistors
• Frequency Response Analysis Procedure
• CE and CS Stages
• CB and CG Stages
• CC and CD (Follower) Stages
• Cascode Stages
• Differential Pairs
• Additional Examples
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Bipolar Differential Pair Frequency Response

 Since bipolar differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of 
poles/zeros are the same as that of the half circuit’s (Slide 43).

Half Circuit

CH 11 Frequency Response
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MOS Differential Pair Frequency Response

 Since MOS differential pair can be analyzed using half-circuit, 
its transfer function, I/O impedances, locations of poles/zeros 
are the same as that of the half circuit’s (Slide 43).

Half Circuit

CH 11 Frequency Response
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Example:  MOS Differential Pair 
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Common Mode Frequency Response

 Css will lower the total impedance between point P to 
ground at high frequency, leading to higher CM gain which 
degrades the CM rejection ratio.
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Tail Node Capacitance Contribution

 Source-Body Capacitance of 
M1, M2

 Drain-Body Capacitance of M3
 Gate-Drain Capacitance of M3

80CH 11 Frequency Response

• M3 is often a large (wide) transistor in order to have a 
small compliance (VDS) voltage
• Watch out for degraded high-frequency CMRR!

CDB3



Agenda
• Frequency Response Concepts
• High-Frequency Models of Transistors
• Frequency Response Analysis Procedure
• CE and CS Stages
• CB and CG Stages
• CC and CD (Follower) Stages
• Cascode Stages
• Differential Pairs
• Additional Examples
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Example:  Capacitive Coupling 
(Low-Frequency Cut-Off)
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To find L2:  
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The “highest” low-frequency pole (L1 = 542Hz) 
will set the low-frequency cut-off
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Example:  IC Amplifier – Low Frequency Design

83CH 11 Frequency Response

  1
21 150  mm gg

The “highest” low-frequency pole (L1 = 37.2MHz) 
will set the low-frequency cut-off
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Example:  IC Amplifier – Midband Design
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  1
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Example:  IC Amplifier – High Frequency Design

CH 11 Frequency Response 85
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To get an accurate estimate for p1 and p2, use the dominant pole approximation 
expressions on Slide 44



Example:  IC Amplifier – High Frequency Design

CH 11 Frequency Response 86
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Next Time
• Feedback

• Razavi Chapter 12
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