ECEN326: Electronic Circuits Spring 2022

Lecture 2: Transistor Models \& Single-Stage Amplifiers

Sam Palermo
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements

- Lab
- Lab 1 report is due this week
- Lab 2 report due next week
- Use the Lab 2 updated specs
- HW
- HW1 due today
- HW2 due Feb 8
- Reading
- Razavi Chapters 5 \& 7

BJT Circuit Symbols

- BJTs are 3 terminal devices
- Collector, Base, \& Emitter
- 2 complementary BJT devices: NPN \& PNP

MOSFET Circuit Symbols

NMOS

PMOS

- MOSFETs are 4-terminal devices
- Drain, Gate, Source, \& Body
- Body terminal generally has small impact in normal operation modes, thus device is generally considered a 3-terminal device
- Drain, Gate, and Source are respectively similar to the Collector, Base, and Emitter of the BJT
- 2 complementary MOSFETS: NMOS, PMOS

NPN "Large-Signal" (DC) Output Characteristic

- For analog applications, we generally desire the BJT to operate in the "Active" region

$$
V_{C E} \geq V_{C E, s a t}=0.3 \mathrm{~V}
$$

NPN "Large-Signal" (DC) Model

- Exact equation

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CE}, \mathrm{sat}} \\
& \mathrm{i}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{S}}}{\beta} \mathrm{e}^{\mathrm{v}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}} \\
& \mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}} \mathrm{e}^{\mathrm{v}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}}
\end{aligned}
$$

- However, V_{BE} doesn't change much over large values of I_{C}. So, for hand calculations we assume a fixed $V_{\text {BE }}$ and use the following

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}
\end{aligned}
$$

NMOS "Large-Signal" (DC) Output Characteristic

- For analog applications, we generally desire the MOSFET to operate in the "Saturation" region

$$
V_{D S} \geq V_{O V}=V_{G S}-V_{t n}
$$

NMOS "Large-Signal" (DC) Model

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{ov}} \Rightarrow \text { Saturation } \\
& \mathrm{V}_{\mathrm{ov}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{tn}} \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{D}}=\frac{\mathrm{k}_{\mathrm{n}}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{ov}}^{2}
\end{aligned}
$$

where $k_{n}^{\prime}=\mu_{n} C_{o x}$

PNP "Large-Signal" (DC) Output Characteristic

- Similar operation to NPN transistor, except
- I_{C} flows out of the device
- Flip the terminal voltages in calculations
- For analog applications, we generally desire the BJT to operate in the "Active" region

$$
V_{E C} \geq V_{E C, s a t}=0.3 \mathrm{~V}
$$

PNP "Large-Signal" (DC) Model

- Exact equation

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EC}} \geq \mathrm{V}_{\mathrm{EC}, \text { sat }} \\
& \mathrm{i}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{S}}}{\beta} \mathrm{e}^{\mathrm{v}_{\mathrm{EB}} / \mathrm{V}_{\mathrm{T}}} \\
& \mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}} \mathrm{e}^{\mathrm{v}_{\mathrm{EB}} / \mathrm{V}_{\mathrm{T}}}
\end{aligned}
$$

- However, V_{EB} doesn't change much over large values of I_{C}. So, for hand calculations we assume a fixed $\mathrm{V}_{\text {EB }}$ and use the following

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}
\end{aligned}
$$

PMOS "Large-Signal" (DC) Output Characteristic

- Similar operation to NMOS transistor, except
- I_{D} flows out of the device
- Flip the terminal voltages in calculations
- For analog applications, we generally desire the BJT to operate in the "Saturation" region

$$
V_{S D} \geq V_{O V}=V_{S G}-\left|V_{t p}\right|
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SD}} \geq \mathrm{V}_{\mathrm{ov}} \Rightarrow \text { Saturation } \\
& \mathrm{V}_{\mathrm{ov}}=\mathrm{V}_{\mathrm{SG}}-\left|\mathrm{V}_{\mathrm{tp}}\right| \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{D}}=\frac{\mathrm{k}_{\mathrm{p}}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{ov}}^{2}
\end{aligned}
$$

where $k_{p}^{\prime}=\mu_{p} C_{o x}$

Large-Signal "DC" Response

Large-Signal "DC" +
 Small-Signal "AC" Response

- For small-signal analysis, we "linearize" the response about the DC operating point
- If the signal is small enough, linearity holds and the complete response is the summation of the large-signal "DC" response and the small-signal "AC" response

DC Analysis vs. Small-Signal Analysis

DC Analysis

$>$ First, DC analysis is performed to determine operating point and obtain small-signal parameters.
$>$ Second, sources are set to zero and small-signal model is used.

NPN \& NMOS Small-Signal T-Models $\left(r_{0}=\infty\right)$

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=\frac{\alpha}{\mathrm{g}_{\mathrm{m}}} \approx \frac{1}{\mathrm{~g}_{\mathrm{m}}} \\
& \mathrm{~g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

Formal PNP \& PMOS Small-Signal T-Models ($r_{0}=\infty$)

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=\frac{\alpha}{\mathrm{g}_{\mathrm{m}}} \approx \frac{1}{\mathrm{~g}_{\mathrm{m}}} \\
& \mathrm{~g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

- While these are the formal models, for both the PNP and PMOS device you can use the exact same model as the NPN and NMOS device
- This is easier to remember
- Obtained by flipping the current sources in the formal model

$$
\mathrm{g}_{\mathrm{m}}=\mathrm{k}_{\mathrm{p}}^{\prime} \frac{\mathrm{W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{ov}}=\sqrt{2 \mathrm{k}_{\mathrm{p}}^{\prime} \frac{\mathrm{W}}{\mathrm{~L}} \mathrm{I}_{\mathrm{D}}}
$$

Input/Output Impedances

(a)

$>$ The figure above shows the techniques of measuring input and output impedances.
> Small signal analysis is used

BJT Node AC Resistances ($r_{0}=\infty$)

$$
\mathrm{R}_{\text {base }}=(\beta+1)\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)
$$

- Using T-model, base AC resistance is the resistors connected from base through the emitter to ground multiplied by ($\beta+1$)

$$
\mathbf{R}_{\text {collector }}=\infty
$$

- If r_{0} is ∞, then collector AC resistance is ∞

$$
\mathrm{R}_{\mathrm{emitter}}=\mathrm{r}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{B}}}{\beta+1}
$$

- Using T-model, emitter AC resistance is r_{e} plus the base resistor divided by $(\beta+1)$

BJT Amplifiers AC Gain ($r_{0}=\infty$)

MOSFET Node AC Resistances ($r_{0}=\infty$)

$$
\mathbf{R}_{\text {gate }}=\infty
$$

- Gate input impedance is capacitive, which is assumed to be infinite resistance at low frequencies

$$
\mathrm{R}_{\mathrm{drain}}=\infty
$$

- If r_{0} is ∞, then drain AC resistance is ∞

$$
\mathrm{R}_{\text {source }}=\frac{1}{\mathrm{~g}_{\mathrm{m}}}
$$

- Using T-model, source AC resistance is the $1 /$ gm resistor

MOSFET Amplifiers AC Gain ($r_{0}=\infty$)

NPN Small-Signal π Model \& Introducing Finite r_{0}

Early Effect $\rightarrow \mathbf{r}_{\mathbf{o}}$

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}} & \mathrm{r}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{C}}} \\
\mathrm{r}_{\pi}=\frac{\beta}{\mathrm{g}_{\mathrm{m}}} & \mathrm{~V}_{\mathrm{T}}=\frac{\mathrm{kT}}{\mathrm{q}}
\end{array}
$$

(b)

PNP Small-Signal π Model $w /$ Finite r_{0}

Early Effect $\rightarrow \mathbf{r}_{\mathbf{o}}$

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}} & \mathrm{r}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{C}}} \\
\mathrm{r}_{\pi}=\frac{\beta}{\mathrm{g}_{\mathrm{m}}} & \mathrm{~V}_{\mathrm{T}}=\frac{\mathrm{kT}}{\mathrm{q}}
\end{array}
$$

- While this is the formal model, you can use the exact same model as the NPN device
- This is easier to remember
- Obtained by flipping the small signal v_{eb} and the current source in the formal model

MOSFET - Impact of Body Voltage

- Before we go over the MOSFET π-model, lets consider the impact of the $4^{\text {th }}$ terminal, the Body, on the drain current I_{D}
- The MOSFET V_{tn} is a function of the Body-Source voltage V_{BS}
- If the threshold voltage changes, then so does I_{D}

$$
\begin{gathered}
I_{D}=\frac{\mu_{n} C_{o x}}{2} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}\left(1+\lambda V_{D S}\right) \\
V_{t n}=V_{t n 0}+\left.\gamma\left[\sqrt{2 \Phi_{F}+V_{S B}}-\sqrt{2 \Phi_{F}}\right] \Rightarrow V_{t n 0}\right|_{V_{S B}=0}
\end{gathered}
$$

Body Transconductance, g_{mb}

- The small-signal drain current changes with V_{BS} modulation due to changes in V_{tn}

NMOS Small-Signal π Model w/ Finite r_{0} \& Body Transconductance g_{mb}

Channel Length Modulation $\rightarrow \mathrm{r}_{\mathrm{o}}$
Body Effect $V_{t n}=V_{t n 0}+\left.\gamma\left\lfloor\sqrt{2 \Phi_{F}+V_{S B}}-\sqrt{2 \Phi_{F}}\right\rfloor \Rightarrow V_{t n 0}\right|_{S B}=0 \rightarrow \mathbf{g}_{\mathrm{mb}}$

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{m}}=\sqrt{2 \mathrm{k}_{\mathrm{n}}^{\prime} \frac{\mathrm{W}}{\mathrm{~L}} \mathrm{I}_{\mathrm{D}}} & \mathrm{r}_{\mathrm{o}}=\frac{1}{\lambda_{\mathrm{n}} \mathrm{I}_{\mathrm{D}}} \\
\mathrm{~g}_{\mathrm{mb}}=\chi \mathrm{g}_{\mathrm{m}} & \mathrm{k}_{\mathrm{n}}^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}
\end{array}
$$

where $\chi=\frac{\gamma}{2 \sqrt{2 \phi_{F}+V_{S B}}}$

- Note, $g_{m b}$ is generally a weak effect $\left(\sim 0.1 g_{m}\right)$. Thus, we often ignore it.
- In problems/assignments I'll make it clear when we need to consider it

PMOS Small-Signal π Model w/ Finite r_{0} \& Body Transconductance g_{mb}

Channel Length Modulation $\rightarrow \mathrm{r}_{\mathrm{o}}$ Body Effect $V_{t p}=V_{t p 0}+\left.\gamma\left[\sqrt{2 \Phi_{F}+V_{S B}}-\sqrt{2 \Phi_{F}}\right] \Rightarrow V_{t p 0}\right|_{V_{S B}=0} \rightarrow \mathbf{g}_{\mathrm{mb}}$

$$
\begin{array}{ll}
g_{m}=\sqrt{2 k_{p}^{\prime} \frac{W}{L} I_{D}} & r_{o}=\frac{1}{\lambda_{\mathrm{p}} \mathrm{I}_{\mathrm{D}}} \\
\mathrm{~g}_{\mathrm{mb}}=\chi \mathrm{g}_{\mathrm{m}} & \mathrm{k}_{\mathrm{p}}^{\prime}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}
\end{array}
$$

- Note, $g_{m b}$ is generally a weak effect ($\sim 0.1 g_{m}$). Thus, we often ignore it.
- In problems/assignments I'll make it clear when we need to consider it

Two-Port Modeling of Amplifiers

- It is often useful to model transistor amplifiers with a Nortonequivalent model consisting of a transconductance current source and parallel output resistance

$$
\frac{v_{o}}{v_{i}}=-G_{m} R_{\text {out }}
$$

Two-Port Modeling - Extracting G_{m} and R_{n}

$$
G_{m}=\left.\frac{i_{s c}}{v_{i}}\right|_{v_{o}=0} \quad \begin{aligned}
& \text { Short the output, apply an } \\
& \text { input voltage stimulus, and } \\
& \text { measure output current }
\end{aligned}
$$

$$
R_{o u t}=\left.\frac{v_{o}}{i_{o}}\right|_{v_{i}=0}
$$

- Short the input, apply an output voltage stimulus, and measure current into output node

Two-Port Modeling - Multi-Stage Amplifiers

Two-Port Modeling - Multi-Stage Amplifiers

$$
G_{m 1}=\frac{i_{s c 1}}{v_{i}} \quad \frac{v_{1}}{v_{i}}=-G_{m 1} R_{n 1}
$$

- Note, Rn1 also includes the input resistance of Stage 2

Two-Port Modeling - Multi-Stage Amplifiers

$$
G_{m 2}=\frac{i_{s c 2}}{v_{1}} \quad \frac{v_{2}}{v_{1}}=-G_{m 2} R_{n 2}
$$

- Repeat procedure stage by stage

Two-Port Modeling - Multi-Stage Amplifiers

$$
G_{m N}=\frac{i_{s c N}}{v_{N-1}} \quad \frac{v_{o}}{v_{N-1}}=-G_{m N} R_{n N}
$$

- Repeat procedure stage by stage
- This procedure will be useful for analyzing multi-stage transistor amplifiers

BJT Amplifiers AC Gain ($r_{0}=\infty$)

CE Amp

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=-g_{m} R_{C}=-\frac{\alpha R_{C}}{r_{e}} \\
G_{m}=g_{m}=\frac{\alpha}{r_{e}} \\
R_{n}=R_{C}
\end{gathered}
$$

CE Amp w/ $\mathbf{R E}_{\mathrm{E}}$

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=-\frac{g_{m} R_{C}}{1+\frac{g_{m} R_{E}}{\alpha}}=-\frac{\alpha R_{C}}{r_{e}+R_{E}} \\
G_{m}=\frac{g_{m}}{1+\frac{g_{m} R_{E}}{\alpha}}=\frac{\alpha}{r_{e}+R_{E}} \\
R_{n}=R_{C}
\end{gathered}
$$

BJT Amplifiers AC Gain ($r_{0}=\infty$)

CC Amp

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=\frac{R_{E}}{r_{e}+R_{E}} \\
G_{m}=-\frac{1}{r_{e}} \\
R_{n}=r_{e} \| R_{E}
\end{gathered}
$$

CB Amp

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{C}}{1+\frac{g_{m} R_{B}}{\beta}}=\frac{\alpha R_{C}}{R_{\text {emitter }}} \\
G_{m}=-\frac{\beta}{r_{e}(\beta+1)+R_{B}}=-\frac{\alpha}{R_{\text {emitter }}}=-\frac{g_{m}}{1+\frac{g_{m} R_{B}}{\beta}}
\end{gathered}
$$

$$
R_{n}=R_{C}
$$

MOSFET Amplifiers AC Gain ($\mathrm{r}_{\mathrm{o}}=\infty$)

CS Amp

$\frac{v_{o}}{v_{i}}=-g_{m} R_{D}$
$G_{m}=g_{m}$
$R_{n}=R_{D}$

CS Amp w/ $\mathbf{R}_{\mathbf{s}}$

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=-\frac{g_{m} R_{D}}{1+g_{m} R_{S}} \\
G_{m}=\frac{g_{m}}{1+g_{m} R_{S}} \\
R_{n}=R_{D}
\end{gathered}
$$

MOSFET Amplifiers AC Gain ($r_{0}=\infty$)

CD Amp

$$
\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{S}}{1+g_{m} R_{S}}
$$

$$
G_{m}=-g_{m}
$$

$$
R_{n}=\frac{1}{g_{m}} \| R_{S}
$$

CG Amp

$$
\frac{v_{o}}{v_{i}}=g_{m} R_{D}=\frac{R_{D}}{R_{\text {source }}}
$$

$$
G_{m}=-g_{m}=-\frac{1}{R_{\text {source }}}
$$

$$
R_{n}=R_{D}
$$

3-Stage BJT Amplifier Example

- This multi-stage amplifier consists of common-emitter, common-base, and common-collector amplifier
- The first two common-emitter and common-base stages are commonly used together, and are called a "cascode amplifier"
- The cascode stage provides all the voltage gain of the circuit, while the output common-collector circuit allows driving of a low-resistance load

3-Stage BJT Amplifier Example - $1^{\text {st }}$ Stage Av

- Using the common-emitter amplifier equations, the gain from the input to $\mathrm{V}_{\mathrm{E} 2}$ is

$$
\begin{gathered}
A_{v 1}=\frac{v_{e 2}}{v_{i n}}=-G_{m 1} R_{n 1} \\
G_{m 1}=\frac{g_{m 1}}{1+\frac{g_{m 1}\left(R_{E} \| R_{G}\right)}{\alpha}}=\frac{\alpha}{r_{e 1}+R_{E} \| R_{G}} \\
R_{n 1}=R_{i 2}=r_{e 2} \\
A_{v 1}=-\frac{\alpha R_{i 2}}{r_{e 1}+R_{E} \| R_{G}}
\end{gathered}
$$

CE Amp w/ $\mathbf{R E}_{\mathrm{E}}$

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=-\frac{g_{m} R_{C}}{1+\frac{g_{m} R_{E}}{\alpha}}=-\frac{\alpha R_{C}}{r_{e}+R_{E}} \\
G_{m}=\frac{g_{m}}{1+\frac{g_{m} R_{E}}{\alpha}}=\frac{\alpha}{r_{e}+R_{E}} \\
R_{n}=R_{C}
\end{gathered}
$$

3-Stage BJT Amplifier Example - 2 ${ }^{\text {nd }}$ Stage Av

- Using the common-base amplifier equations, the gain from $\mathrm{V}_{\mathrm{E} 2}$ to $\mathrm{V}_{\mathrm{B} 3}$ is

$$
\begin{gathered}
A_{v 2}=\frac{v_{b 3}}{v_{e 2}}=-G_{m 2} R_{n 2} \\
G_{m 2}=-\frac{\beta}{r_{e 2}(\beta+1)}=-\frac{\alpha}{R_{i 2}}=-g_{m 2} \\
R_{n 2}=R_{C}\left\|R_{i 3}=R_{C}\right\|\left[(\beta+1)\left(r_{e 3}+R_{L}\right)\right] \\
A_{v 2}=\frac{\alpha\left(R_{C} \|\left[(\beta+1)\left(r_{e 3}+R_{L}\right)\right]\right)}{R_{i 2}}
\end{gathered}
$$

$$
G_{m}=-\frac{\beta}{r_{e}(\beta+1)+R_{B}}=-\frac{\alpha}{R_{\text {emitter }}}=-\frac{g_{m}}{1+\frac{g_{m} R_{B}}{\beta}}
$$

$$
R_{n}=R_{C}
$$

3-Stage BJT Amplifier Example - 3rd Stage Av

- Using the common-collector amplifier equations, the gain from $\mathrm{V}_{\mathrm{B} 3}$ to $\mathrm{V}_{\text {out }}$ is

$$
\begin{gathered}
A_{v 3}=\frac{v_{o u t}}{v_{b 3}}=-G_{m 3} R_{n 3} \\
G_{m 3}=-\frac{1}{r_{e 3}} \\
R_{n 3}=r_{e 3} \| R_{L} \\
A_{v 3}=\frac{R_{L}}{r_{e 3}+R_{L}}
\end{gathered}
$$

CC Amp

$$
\begin{gathered}
\frac{v_{o}}{v_{i}}=\frac{R_{E}}{r_{e}+R_{E}} \\
G_{m}=-\frac{1}{r_{e}}
\end{gathered}
$$

$$
R_{n}=r_{e} \| R_{E}
$$

3-Stage BJT Amplifier Example - Total Av

- The total gain is equal to the product of the individual stage gains

$$
\begin{gathered}
A_{v, t o t}=\frac{v_{\text {out }}}{v_{\text {in }}}=A_{v 1} A_{v 2} A_{v 3} \\
=\left(-\frac{\alpha R_{i 2}}{r_{e l}+R_{E} \| R_{G}}\right)\left(\frac{\alpha\left(R_{C} \mid R_{i 3}\right)}{R_{i 2}}\right)\left(\frac{R_{L}}{r_{e 3}+R_{L}}\right) \\
\approx\left(-\frac{R_{C} \mid R_{i 3}}{r_{e l}+R_{E} \mid R_{G}}\right)\left(\frac{R_{L}}{r_{e 3}+R_{L}}\right)
\end{gathered}
$$

Amplifier Example I

> The keys in solving this problem are recognizing the AC ground between R_{1} and R_{2}, and Thevenin transformation of the input network
$>$ Then the common-emitter amplifer equations can be used

Amplifier Example I

- Find the input Thevenin equivalent

$$
v_{\text {Thev }}=v_{\text {in }} \frac{R_{1}}{R_{S}+R_{1}} \quad R_{\text {Thev }}=R_{S} \| R_{1}
$$

Amplifier Example I

- Use the common-emitter amplifier equations

- As there is a base resistance $\left(\mathrm{R}_{\text {Thev }}\right)$, this must be reflected into the emitter by dividing by $(\beta+1)$ to use the derived equation

$$
\frac{v_{o}}{v_{i}}=-\frac{\alpha\left(R_{C} \| R_{2}\right)}{\frac{R_{1} \| R_{S}}{\beta+1}+r_{e}+R_{E}} \cdot \frac{R_{1}}{R_{1}+R_{S}}
$$

$$
\frac{v_{o}}{v_{i}}=-\frac{g_{m} R_{C}}{1+\frac{g_{m} R_{E}}{\alpha}}=-\frac{\alpha R_{C}}{\left(r_{e}+R_{E}\right.}
$$

Amplifier Example II

$>$ Again, AC ground/short and Thevenin transformation are needed to transform the complex circuit into a simple stage with emitter degeneration.

Amplifier Example III

$$
\begin{gathered}
R_{i n}=(\beta+1)\left(r_{e 1}+R_{e q}\right)=(\beta+1)\left(r_{e 1}+r_{e 2}+\frac{R_{1}}{\beta+1}\right)=r_{\pi 1}+r_{\pi 2}+R_{1} \\
\frac{v_{o}}{v_{i}}=-\frac{\alpha R_{D}}{r_{e 1}+r_{e 2}+\frac{R_{1}}{\beta+1}}
\end{gathered}
$$

The key for solving this problem is first identifying $\mathbf{R}_{\text {eq }}$, which is the impedance seen at the emitter of Q_{2} in parallel with the infinite output impedance of an ideal current source

Next Time

- Differential amplifiers
- Razavi Chapter 10

