ECEN326: Electronic Circuits Spring 2022

Lecture 1: Introduction

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Analog Circuit Sequence

Why is Analog Important?

- Naturally occurring signals are analog
- Analog circuits are required to amplify and condition the signal for further processing
- Performance of analog circuits often determine whether the chip works or not
- Examples
 - Sensors and actuators (imagers, MEMS)
 - RF transceivers
 - Microprocessor circuits (PLL, high-speed I/O, thermal sensor)

Integrated Circuits

[Bohr ISSCC 2009]

- Cellular Transceiver
 (0.13µm CMOS)
 - Considerable analog & digital
 - Instrumentation Amplifier (0.5µm CMOS)

Digital

- Mostly Analog
- Some Digital Control Logic

- 4-core Microprocessor (45nm CMOS)
 - Mostly Digital
 - Noteable analog blocks
 - PLL, I/O circuits, thermal sensor

[Sowlati ISSCC 2009]

[Pertijs ISSCC 2009]

The Power of CMOS Scaling

[Bohr ISSCC 2009]

- Scaling transistor dimensions allows for improved performance, reduced power, and reduced cost/transistor
- Assuming you can afford to build the fab
 - 32nm CMOS fab ~3-4 BILLION dollars

Course Topics

- BJT & MOSFET Review
 - Large signal model
 - Small signal model
- Differential Amplifiers
 - Large & small-signal analysis
 - Common-mode rejection
- Current Mirrors
 - Allows for accurate current sources
 - Output resistance & compliance voltage

Course Topics

- Active Loads
 - Allows for higher gain
 - Useful in IC design
- Frequency Response
 - What limits the bandwidth of our circuits
 - High-frequency transistor model
- Feedback
 - Allows for accurate gain
- Stability
 - In this class, we want to build amplifiers (not oscillators)
 - Phase & gain margin

Course Goals

- Learn how to analyze and simulate multi-transistor analog circuits
 - Large & small-signal analysis
 - Nodal impedance estimation
 - Develop "inspection-based" analysis capabilities
 - Extensive use of MultiSim
- Understand fundamental analog building blocks
 - Differential amplifiers, current mirrors, active loads
- Understand fundamental analog design concepts
 - Frequency response, feedback, stability
- Use circuit building blocks and design concepts to construct moderately complex analog circuits
 - "Build" component is emphasized in lab

Administrative

- Instructor:
 - Sam Palermo
 - 315E WERC Bldg., 979-458-4114, spalermo@tamu.edu
 - Office hours: M 10:00AM-11:30AM & F 1:00PM-2:30PM
 - Online via Zoom
- Lectures: TR 9:35AM-10:50AM, ETB 1037
- Class web page
 - <u>https://people.engr.tamu.edu/spalermo/ecen326.html</u>
- Prerequisite
 - ECEN 314 and 325

Class Material

- Textbook: *Fundamentals of Microelectronics, 2nd Edition*, B. Razavi, Wiley, 2014.
- References
 - *Class Notes*, A. Karsilayan. (Excellent Condensed Notes)
 - Material is posted on website
- Lectures
 - ~100% slides, with previous semester's notes posted on website

Lab

- Some details are TDB
- Lab kit details TBD
 - Use your 325 lab kit for now

- Preliminary plan is to use Analog Discovery 2, like in 325?
 - How many people have an AD2?
 - Tentative plan is for the department to supply them
- Primary circuit simulator is MultiSim
 - Follow instructions on website to get started
- Lab starts on Jan 26-27 with an orientation session
- Lab 1 is due on Feb 2-3

Grading

- Exams (60%)
 - Three midterm exams (20% each)
- Homework (20%)
 - Collaboration is allowed, but independent simulations and write-ups
 - Need to install MultiSim on your laptop/computer
 - Turn in via Canvas
 - No late homework will be graded
- Laboratory (20% + 2%)
 - Lab 11 is extra credit, with the total lab grade computed as a sum of the 11 lab grades divided by 10

Preliminary Schedule

	Торіс	Week
I.	Introduction/Amplifier review	Week 1-6
II.	Differential amplifiers	
	Review session (30 min.)	Feb. 22
	1 st MIDTERM	Feb. 24
III.	Current mirrors	Week 7-10
IV.	Active loads	
V.	Frequency response	
	Review session (30 min.)	Mar. 29
	2 nd MIDTERM	Mar. 31
VI.	Stability	- Week 11-15
VII.	Output stages	
	Review session (30 min.)	Apr. 28
	3 rd MIDTERM	May 5 (12:30PM-2:30PM)

• Dates may change with reasonable notice

Reading

- Razavi Chapter 5 & 7
 - The majority of this material should be 325 review