ECEN 326 Lab 7 Design of a BJT Operational Transconductance Amplifier

Circuit Topology

The operational transconductance amplifier (OTA) schematic that will be designed in this lab is shown in Fig. 1.

Figure 1: Operational transconductance amplifier (OTA) schematic.

DC Biasing and Large-Signal Analysis:

Assuming $I_{B9} \ll I_{R_{B2}}$, the tail current source (I_T) can be calculated from

$$I_T \approx \frac{\frac{R_{B2}}{R_{B1} + R_{B2}} V_{EE} - 0.7}{R_{B3}}$$
(1)

Collector currents of $Q_1 - Q_4$ for $V_{id} = 0$ can be found as

$$I_{C1-C4} \approx \frac{I_T}{2} \tag{2}$$

If the ratio of I_5 to I_3 is less than an order of magnitude, then $V_{EB5} \approx V_{EB3}$, therefore,

$$I_{C5}R_{E3} = I_{C3}R_{E2} \Rightarrow \frac{I_{C5}}{I_{C3}} \approx \frac{R_{E2}}{R_{E3}}$$
 (3)

An OTA is commonly used in the open-loop configuration. For proper operation, the maximum differential input amplitude $|v_{id,max}|$ needs to be determined. With emitter degeneration resistors R_{E1} , $|v_{id,max}|$ can be approximately found as

$$|v_{id,max}| = I_T R_{E1} \tag{4}$$

A more accurate limit can be defined by a maximum distortion specification. It is also necessary to determine what range of common-mode input voltages will allow all transistors in the input stage to remain in the active

[©] Department of Electrical and Computer Engineering, Texas A&M University

region. Defining the minimum collector-emitter voltage for the active operation as $V_{CE,sat}$, the range of V_{CM} can be approximately given by

$$V_{CC} - I_T R_{E2} - V_{CE,sat} > V_{CM} > - V_{EE} + I_T R_{B3} + V_{CE,sat} + I_T R_{E1} + V_{BE,on}$$
(5)

AC Small-Signal Analysis:

Since the circuit is not symmetrical, half-circuit concepts will not be useful. Figure 2 shows the AC small-signal equivalent circuit to determine the equivalent transconductance

$$G_m = \frac{-i_{sc}}{v_{id}} \tag{6}$$

where the output resistances (r_o) of transistors are assumed to be infinite.

Figure 2: Small-signal circuit of the OTA.

KCL at v_x yields

$$\frac{v_x}{R_T} + \frac{v_x - \left(-\frac{v_{id}}{2}\right)}{r_{e1} + R_{E1}} + \frac{v_x - \left(\frac{v_{id}}{2}\right)}{r_{e2} + R_{E1}} = 0$$
(7)

Since Q_1 and Q_2 are identical, $r_{e1} = r_{e2}$, resulting in

$$\frac{v_x}{R_T} + \frac{v_x}{r_{e1} + R_{E1}} + \frac{v_x}{r_{e2} + R_{E1}} = 0 \quad \Rightarrow \quad v_x = 0$$
(8)

Therefore, v_x is a virtual AC ground for differential input signals. The collector current of Q_6 can be found as follows:

$$i_{c4} = \alpha i_{e2} \approx \frac{v_{id}/2}{R_{E1} + r_{e2}}$$
(9)

$$\dot{i}_{c6} \approx \frac{\dot{i}_{c4}(R_{E2} + r_{e4})}{R_{E3} + r_{e6}} = \frac{v_{id}}{2} \frac{1}{R_{E1} + r_{e2}} \frac{R_{E2} + r_{e4}}{R_{E3} + r_{e6}}$$
(10)

Similarly, i_{c5} and i_{c8} can be found as

$$i_{c5} \approx -\frac{v_{id}}{2} \frac{1}{R_{E1} + r_{e1}} \frac{R_{E2} + r_{e3}}{R_{E3} + r_{e5}}$$
 (11)

$$i_{c8} \approx i_{c5} \frac{R_{E4} + r_{e7}}{R_{E4} + r_{e8}} \tag{12}$$

Since Q_7 and Q_8 are identical, $r_{e7} = r_{e8}$, which yields

$$i_{c8} \approx -\frac{v_{id}}{2} \frac{1}{R_{E1} + r_{e1}} \frac{R_{E2} + r_{e3}}{R_{E3} + r_{e5}}$$
 (13)

The short-circuit output current (i_{sc}) can be determined as

$$i_{sc} = i_{c6} - i_{c8} = \frac{v_{id}}{2} \frac{1}{R_{E1} + r_{e2}} \frac{R_{E2} + r_{e4}}{R_{E3} + r_{e6}} - \left(-\frac{v_{id}}{2} \frac{1}{R_{E1} + r_{e1}} \frac{R_{E2} + r_{e3}}{R_{E3} + r_{e5}}\right)$$
(14)

Using the matching data, $r_{e2} = r_{e1}$, $r_{e4} = r_{e3}$, $r_{e6} = r_{e5}$,

$$i_{sc} = v_{id} \ \frac{1}{R_{E1} + r_{e2}} \ \frac{R_{E2} + r_{e4}}{R_{E3} + r_{e6}} \tag{15}$$

$$G_m = -\frac{1}{R_{E1} + r_{e2}} \frac{R_{E2} + r_{e4}}{R_{E3} + r_{e6}}$$
(17)

The differential input resistance can be found as

$$R_{id} = 2(\beta + 1)(r_{e2} + R_{E1})$$

The output resistance can be expressed as

$$R_o \approx (g'_{m6}r_{o6}R'_{E3} + r_{o6}) \parallel (g'_{m8}r_{o8}R'_{E4} + r_{o8})$$
(18)

$$g'_{m6} = g_{m6} \frac{r_{\pi 6}}{r_{\pi 6} + r_{e4} + R_{E2}}, \quad R'_{E3} = R_{E3} \parallel (r_{\pi 6} + r_{e4} + R_{E2})$$
(19)

$$g'_{m8} = g_{m8} \frac{r_{\pi 8}}{r_{\pi 8} + r_{e7} + R_{E4}}, \quad R'_{E4} = R_{E4} \parallel (r_{\pi 8} + r_{e7} + R_{E4})$$
(20)

We may construct an equivalent small-signal model for the OTA as shown in Fig. 3.

Figure 3: Equivalent small-signal model of the OTA.

Calculations and Simulations

Design an OTA with the following specifications:

 $\begin{array}{ll} V_{CC} = V_{EE} = 5 \ V & G_m = 1 \ mA/V & \text{Operating frequency: 1 kHz} \\ |v_{id,max}| \geq 2V & V_{CM,max} - V_{CM,min} \geq 4V & I_{supply} \leq 5 \ mA \end{array}$

- 1. Show all your calculations and final component values.
- **2.** Calculate R_{id} and R_o for your design.
- **3.** Verify your results using a circuit simulator (use 2N3904 and 2N3906 transistors). Submit all necessary simulation plots showing that the specifications are satisfied. Also provide the circuit schematic with DC bias points annotated.

Measurements

- 1. Construct the OTA you designed.
- **2.** Set $V_{id} = 0$ and record all DC quiescent voltages and currents.
- **3.** Measure I_{supply} and the short-circuit output current while $V_{id} = 0$.
- 4. Apply differential input signals to the OTA.
- 5. Connect a $1k\Omega$ resistor between the output node and ground and measure G_m .
- **6.** Increase the input amplitude until nonlinearity occurs. Measure the width of the input linear range ($|v_{id,max}|$).
- 7. Ground V_{B2} and the output node, and measure the differential input resistance R_{id} at V_{B1} .
- 8. Using the circuit setup below, measure the transconductance (G_m) of your OTA.

9. Connect the OTA as shown in the figure below and set the amplitude of V_s to $|v_{id,max}|$. While monitoring V_o vs. V_s , vary the potentiometer in both directions until nonlinearity occurs. Measure and record the DC voltage at V_{B2} at the two settings of the potentiometer where distortion occurs. Record these two measurements as $V_{CM,max}$ and $V_{CM,min}$.

Report

- 1. Include calculations, schematics, simulation plots, and measurement plots.
- 2. Prepare a table showing calculated, simulated and measured results.
- 3. Compare the results and comment on the differences.

Demonstration

- 1. Construct the OTA you designed on your breadboard and bring it to your lab session.
- 2. Your name and UIN must be written on the side of your breadboard.
- 3. Submit your report to your TA at the beginning of your lab session.
- **4.** Apply differential input signals to the OTA, connect a $1k\Omega$ resistor between the output node and ground, and measure G_m .
- 5. Measure $|v_{id,max}|$, $V_{CM,max}$ and $V_{CM,min}$.