ECEN 326 Lab 6

Design of Current Mirrors

Circuit Topologies

NPN Simple Current Mirror:

$$
\begin{aligned}
& I_{o} \approx \frac{V_{C C}-0.7}{R_{C}+R_{E 1}} \frac{R_{E 1}}{R_{E 2}}, \quad V_{o, \text { min }}=V_{C E 2, \text { sat }}+I_{o} R_{E 2} \\
& R_{o}=g_{m 2}^{\prime} r_{o 2} R_{E}^{\prime}+r_{o 2}+R_{E}^{\prime} \\
& g_{m 2}^{\prime}=g_{m 2} \frac{r_{\pi 2}}{r_{\pi 2}+R_{B}}, \quad R_{E}^{\prime}=R_{E 2} \|\left(r_{\pi 2}+R_{B}\right) \\
& R_{B}=R_{C} \|\left(r_{e 1}+R_{E 1}\right)
\end{aligned}
$$

NPN Simple Current Mirror with β Helper:

$$
\begin{aligned}
& I_{o} \approx \frac{V_{C C}-1.4}{R_{C}+R_{E 1}} \frac{R_{E 1}}{R_{E 2}}, \quad V_{o, \text { min }}=V_{C E 2, s a t}+I_{o} R_{E 2} \\
& R_{o}=g_{m 2}^{\prime} r_{o 2} R_{E}^{\prime}+r_{o 2}+R_{E}^{\prime} \\
& g_{m 2}^{\prime}=g_{m 2} \frac{r_{\pi 2}}{r_{\pi 2}+R_{B}}, \quad R_{E}^{\prime}=R_{E 2} \|\left(r_{\pi 2}+R_{B}\right) \\
& R_{B}=\left(\frac{R_{C}}{\beta+1}+\frac{(\beta+1) r_{e 1}}{N}\right)\left\|\left[\frac{r_{e 1}+R_{E 1}}{\beta}\left(1+\frac{(\beta+1)^{2} r_{e 1}}{N R_{C}}\right)\right]\right\|(\beta+1)\left(r_{e 1}+R_{E 1}\right) \\
& N: \text { Number of base terminals connected to the node } \otimes
\end{aligned}
$$

NMOS Simple Current Mirror:

$$
\begin{aligned}
& I_{D 1}=\frac{V_{C C}-V_{G S 1}}{R_{C}}=\frac{k_{n}^{\prime}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{G S 1}-V_{t n}\right)^{2}, \quad V_{t n}<V_{G S 1}<V_{C C} \\
& I_{o}=\frac{(W / L)_{2}}{(W / L)_{1}} I_{D 1}, \quad V_{o, \min }=V_{G S 1}-V_{t n}=V_{o v 1} \\
& R_{o}=r_{o 2}
\end{aligned}
$$

PMOS Simple Current Mirror:

$$
\begin{aligned}
& I_{D 1}=\frac{V_{C C}-V_{S G 1}}{R_{C}}=\frac{k_{p}^{\prime}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{S G 1}-\left|V_{t p}\right|\right)^{2}, \quad\left|V_{t p}\right|<V_{S G 1}<V_{C C} \\
& I_{o}=\frac{(W / L)_{2}}{(W / L)_{1}} I_{D 1}, \quad V_{o, \max }=V_{C C}-\left(V_{S G 1}-\left|V_{t p}\right|\right)=V_{C C}-V_{o v 1} \\
& R_{o}=r_{o 2}
\end{aligned}
$$

NMOS Cascode Current Mirror:

(c) Department of Electrical and Computer Engineering, Texas A\&M University

Calculations and Simulations

The following table shows transistor device parameters. Use $V_{C C}=5 \mathrm{~V}$ for all calculations.

NPN	NMOS	PMOS
2N3904	CD4007N	CD4007P
$\beta=140$	$k_{n}^{\prime}=70 \mu A / V^{2}$	$k_{p}^{\prime}=15 \mu A / V^{2}$
$V_{C E, s a t}=0.2 \mathrm{~V}$	$V_{t n}=1.4 \mathrm{~V}$	$V_{t p}=-1.65 \mathrm{~V}$
$V_{A}=75 \mathrm{~V}$	$W=170 \mu \mathrm{~m}$	$W=360 \mu \mathrm{~m}$
	$L=10 \mu \mathrm{~m}$	$L=10 \mu \mathrm{~m}$
	$\lambda_{n}=0.016 \mathrm{~V}^{-1}$	$\lambda_{p}=0.01 \mathrm{~V}^{-1}$

1. Calculate R_{C}, R_{o}, and the output operating voltage range for the current mirrors in the following table:

(a)	NPN Simple Current Mirror	$R_{E 1}=R_{E 2}=100 \Omega$	$I_{o}=1 \mathrm{~mA}$
(b)	NPN Simple Current Mirror with β Helper	$R_{E 1}=R_{E 2}=100 \Omega$	$I_{o}=1 \mathrm{~mA}$
(c)	NPN Simple Current Mirror with β Helper	$R_{E 1}=100 \Omega, R_{E 2}=50 \Omega, Q_{2}=2 \times Q_{1}{ }^{\dagger}$	$I_{o}=2 \mathrm{~mA}$
(d)	NMOS Simple Current Mirror	$(W / L)_{1}=(W / L)_{2}=170 \mu / 10 \mu$	$I_{o}=100 \mu \mathrm{~A}$
(e)	NMOS Simple Current Mirror	$(W / L)_{1}=170 \mu / 10 \mu,(W / L)_{2}=340 \mu / 10 \mu$	$I_{o}=200 \mu \mathrm{~A}$
(f)	PMOS Simple Current Mirror	$(W / L)_{1}=(W / L)_{2}=360 \mu / 10 \mu$	$I_{o}=100 \mu \mathrm{~A}$
(g)	NMOS Cascode Current Mirror	$W / L=170 \mu / 10 \mu$	$I_{o}=100 \mu \mathrm{~A}$

${ }^{\dagger} Q_{2}$ is composed of two transistors (each identical to Q_{1}) connected in parallel.
2. For each current mirror, perform $D C$ simulation by sweeping V_{o} from 0 to $V_{C C}$ (for the cascode mirror, from $-V_{C C}$ to $V_{C C}$), and plot the output current I_{0}.
3. For each current mirror, perform AC simulation while $V_{o, d c}=2 V$, and plot the output resistance R_{o}.
4. Submit all simulation plots and the circuit schematics with DC bias points annotated ($@ V_{o}=2 \mathrm{~V}$).

Measurements

1. Construct all current mirrors you designed.
2. For each circuit, measure I_{o}, R_{o} and the output operating voltage range.

Report

1. Include calculations, schematics, simulation plots, and measurement plots.
2. Prepare a table showing calculated, simulated and measured results.
3. Compare the results and comment on the differences.

Demonstration

1. Construct all current mirrors you designed on your breadboard and bring it to your lab session.
2. Your name and UIN must be written on the side of your breadboard.
3. Submit your report to your TA at the beginning of your lab session.
4. For each circuit, measure I_{0}, R_{o} and the output operating voltage range.
