# ECEN 326 Lab 5 Design of a MOS Differential Amplifier

# **Circuit Topology**

The following figure shows a typical MOS differential amplifier, as well as MOS device parameters.



The tail current source  $(I_T)$  can be calculated from

$$V_{SS} = I_{D4}R_B + V_{GS4}$$
$$I_{D4} = \frac{k'_n}{2}\frac{W}{L}(V_{GS4} - V_{tn})^2$$
$$I_T = I_{D3} = I_{D4}$$

DC drain currents of  $M_1$  and  $M_2$  are

$$I_{D1} = I_{D2} = \frac{I_T}{2}$$

Assuming  $r_{o1}$ ,  $r_{o2} \gg R_D$ , small-signal differential-mode gain can be obtained as

$$A_{dm} = \frac{v_{od}}{v_{id}} \approx -\frac{R_D}{\frac{1}{g_{m1}}} = -g_{m1}R_D$$

where  $g_{m1} = \sqrt{2k'_n \frac{W}{L}I_{D1}}$ . Common-mode gain can be found as

$$A_{cm} = \frac{v_{oc}}{v_{ic}} \approx -\frac{R_D}{\frac{1}{g_{m1}} + 2R_T}$$

where  $R_T = r_{o3} = \frac{1}{\lambda_n I_{D3}}$ . Common-mode rejection ratio (CMRR) can be calculated from

$$\mathrm{CMRR} = 20 \log \left| \frac{A_{dm}}{A_{cm}} \right|$$

<sup>©</sup> Department of Electrical and Computer Engineering, Texas A&M University

## **Calculations and Simulations**

Design a MOS differential amplifier with the following specifications:

 $\begin{array}{ll} V_{ic}=0 \ V & I_{supply} \leq 0.5 \ mA & \mbox{THD} \leq 5\% \ \mbox{for} \ V_{od}=5 \ V \ \mbox{0-to-peak} \ @ 1 \ \mbox{HHz} \\ V_{DD}=V_{SS}=5 \ V & |A_{dm}| \geq 10 \end{array}$ 

- 1. Show all your calculations, design procedure, and final component values.
- **2.** Simulate your circuit using CD4007N transistors. Submit all necessary simulation plots showing that the specifications are satisfied. Also provide the circuit schematic with DC bias points annotated.
- 3. Using a circuit simulator, perform Fourier analysis and show that the total harmonic distortion (THD) is less than 5% when the differential output voltage ( $V_{od}$ ) is 5 V zero-to-peak at 1 kHz. Provide the simulation results.

#### Measurements

- 1. Construct the amplifier you designed.
- 2. Connect V<sub>i1</sub> and V<sub>i2</sub> to ground and record all DC quiescent voltages and currents. If any DC bias value (especially I<sub>D</sub>) is significantly different than the one obtained from simulations, modify your circuit to get the desired DC bias before you move onto the next step.
- **3.** Measure  $I_{supply}$  and the output offset voltage  $V_{o1} V_{o2}$ .
- 4. Apply differential input signals at 1 kHz to the amplifier, measure A<sub>dm</sub>.
- **5.** Adjust the input signal level so that the differential output voltage is 5 V zero-to-peak. Measure the THD at the differential output.
- **6.** Apply common input signals to the amplifier, measure  $A_{cm}$  and calculate CMRR.

## Report

- 1. Include calculations, schematics, simulation plots, and measurement plots.
- 2. Prepare a table showing calculated, simulated and measured results.
- 3. Compare the results and comment on the differences.

## Demonstration

- 1. Construct the amplifier you designed on your breadboard and bring it to your lab session.
- 2. Your name and UIN must be written on the side of your breadboard.
- 3. Submit your report to your TA at the beginning of your lab session.
- **4.** Apply differential input signals at 1 kHz to the amplifier, measure  $A_{dm}$ .
- **5.** Adjust the input signal level so that the differential output voltage is 5 V zero-to-peak. Measure the THD at the differential output.
- **6.** Apply common input signals to the amplifier, measure *A*<sub>cm</sub> and calculate CMRR.