
ECEN 326 Lab 3 Design of a Two-Stage MOSFET Amplifier

Circuit Topology

The following figure shows the two-stage dual-supply MOSFET amplifier circuit that will be designed in this lab.

DC drain currents of M_1 and M_4 are set by the two current mirrors as follows:

$$I_{D1} = I_{D2} = I_{D3} = \frac{V_{SS} - V_{GS3}}{R_{B1}} = \frac{k'_n}{2} \frac{W}{L} (V_{GS3} - V_{tn})^2$$
(1)

$$I_{D4} = I_{D5} = I_{D6} = \frac{V_{S5} - V_{GS6}}{R_{B2}} = \frac{k'_n}{2} \frac{W}{L} (V_{GS6} - V_{tn})^2$$
(2)

For M_1 , M_2 and M_5 , the following should be satisfied for the active operation:

$$V_{DS} \ge V_{ov} = V_{GS} - V_{tn} \tag{3}$$

The signal swing at the drain of M_1 is limited by V_{DD} and $-V_{SS} + V_{ov2} + V_{ov1}$, provided that the gate bias of M_1 is arranged to have the maximum possible swing. However, the minimum value at V_{d1} is usually limited by $-V_{SS} + V_{ov5} + V_{GS4}$, which is typically higher than $-V_{SS} + V_{ov2} + V_{ov1}$. In order to maximize the symmetrical swing, the DC bias at V_{D1} may be centered between the upper and the lower limit. However, centering the DC bias is not always necessary, since it may conflict with other specifications. Nevertheless, the difference between V_{D1} and the upper or lower limit should be greater than the desired swing at that node.

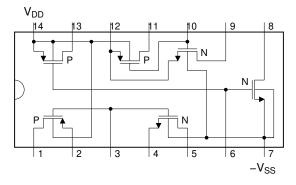
As in the case of BJT emitter-follower, MOS source follower bias current can be determined from

$$I_{D5} \ge \frac{0\text{-to-peak output swing}}{R_L} \tag{4}$$

AC small-signal parameters can be obtained as:

$$A_{\nu} = \frac{v_{out}}{v_{in}} \approx -\frac{R_D}{\frac{1}{g_{m1}}} \frac{R_L}{R_L + \frac{1}{g_{m4}}} = -g_{m1}R_D \frac{R_L}{R_L + \frac{1}{g_{m4}}}$$
(5)

where


$$g_m = k'_n \frac{W}{L} V_{ov} = \sqrt{2k'_n \frac{W}{L} I_D}$$
(6)

CD4007 transistor array will be used for the implementation of the amplifier. Device parameters of CD4007 are approximately given as follows:

[©] Department of Electrical and Computer Engineering, Texas A&M University

CD4007N	CD4007P
$k'_n = 70 \ \mu A/V^2$	$k'_{p} = 15 \ \mu A/V^{2}$
$V_{tn} = 1.4 V$	$\dot{V}_{tp} = -1.65 V$
$W = 170 \ \mu m$	$W = 360 \ \mu m$
$L = 10 \ \mu m$	$L = 10 \ \mu m$
$\lambda_n = 0.016 \ V^{-1}$	$\lambda_{p}=$ 0.01 V^{-1}

Connection diagram of the CD4007 chip (top view) is shown below.

Note that all P-channel substrates are connected to V_{DD} and all N-channel substrates are connected to $-V_{SS}$.

Calculations and Simulations

Design a common-source MOSFET amplifier with a source follower using the following specifications:

 $V_{DD} = V_{SS} = 5 V$ $R_L = 5 k\Omega$ Operating frequency: 5 kHz $R_{in} \ge 100 k\Omega$ $|A_v| = 30$ Zero-to-peak un-clipped swing at $V_{out} \ge 2.5 V$ $I_{supply} \le 1.5 mA$

- 1. Show all your calculations, design procedure, and final component values.
- **2.** Verify your results using a circuit simulator. Submit all necessary simulation plots showing that the specifications are satisfied. Also provide the circuit schematic with DC bias points annotated.
- **3.** Using a circuit simulator, perform Fourier analysis and determine the input and the output signal amplitudes resulting in 5% total harmonic distortion (THD) at the output. Provide the simulation results.

Measurements

- 1. Construct the amplifier you designed.
- 2. Measure *I*_{D1}, *I*_{D4}, *V*_{D1}, *V*_{D2} and *V*_{D5}. If any DC bias value (especially *I*_D) is significantly different than the one obtained from simulations, modify your circuit (i.e. change *R*_{B1}, *R*_{B2}, *R*_{G1}, or *R*_{G2}) to get the desired DC bias before you move onto the next step.
- **3.** Measure A_v , R_{in} , and I_{supply} (for both V_{DD} and $-V_{SS}$).
- 4. Measure the maximum un-clipped output signal amplitude.
- 5. Find the input signal amplitude resulting in 5% THD measurement at the output.

Report

- 1. Include calculations, schematics, simulation plots, and measurement plots.
- 2. Prepare a table showing calculated, simulated and measured results.
- 3. Compare the results and comment on the differences.

Demonstration

- 1. Construct the amplifier you designed on your breadboard and bring it to your lab session.
- 2. Your name and UIN must be written on the side of your breadboard.
- 3. Submit your report to your TA at the beginning of your lab session.
- **4.** Measure A_v , R_{in} , and I_{supply} (for both V_{DD} and $-V_{SS}$).
- **5.** Apply the input signal resulting in 5% THD at the output from your earlier measurements. Show the input and output waveforms, and THD measurement at the output.