ECEN 326 Lab 2

Design of a Three-Stage BJT Amplifier

Circuit Topology

Figure 1 shows the three-stage amplifier to be designed in this lab. The first stage is a common-emitter amplifier, which is followed by a common-base stage. This combination is known as the cascode amplifier. An emitter follower is added as the final stage.

Figure 1: Cascode amplifier with an emitter follower

For β-insensitive DC biasing, the base current of $Q_{1}\left(I_{B 1}\right)$ should be negligible compared to I_{1} :

$$
\begin{equation*}
I_{B 1} \ll I_{1} \Rightarrow \frac{I_{C 1}}{\beta} \ll \frac{V_{C C}}{R_{B}} \Rightarrow N \frac{I_{C 1}}{\beta}=\frac{V_{C C}}{R_{B}} \Rightarrow R_{B}=\frac{\beta V_{C C}}{N I_{C 1}}, N \geq 10 \tag{1}
\end{equation*}
$$

Small-signal AC voltage gain $\left(A_{V}\right)$ can be expressed as

$$
\begin{equation*}
A_{v}=\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\frac{R_{i 2}}{r_{e 1}+\left(R_{E} \| R_{G}\right)} \frac{R_{C} \| R_{i 3}}{R_{i 2}} A_{F} \Rightarrow r_{e 1}+\left(R_{E} \| R_{G}\right)=\frac{R_{C} \| R_{i 3}}{A_{v}} A_{F} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
A_{F} & =\frac{v_{\text {out }}}{v_{b 3}}=\frac{R_{L}}{r_{e 3}+R_{L}} \tag{3}\\
R_{i 3} & =(\beta+1)\left(r_{e 3}+R_{L}\right) \tag{4}
\end{align*}
$$

Input resistance of the amplifier $\left(R_{i n}\right)$ can be calculated as

$$
\begin{equation*}
R_{i n}=k R_{B}\left\|(1-k) R_{B}\right\|(\beta+1)\left[r_{e 1}+\left(R_{E} \| R_{G}\right)\right] \approx k(1-k) R_{B} \| \beta\left[r_{e 1}+\left(R_{E} \| R_{G}\right)\right] \tag{5}
\end{equation*}
$$

Substituting R_{B} from (1) and $\left[r_{e 1}+\left(R_{E} \| R_{G}\right)\right]$ from (2) into (5) results in

$$
\begin{equation*}
R_{i n}=\left(k(1-k) \frac{\beta V_{C C}}{N I_{C 1}}\right) \|\left(\beta \frac{R_{C} \| R_{i 3}}{A_{v}} A_{F}\right)=\frac{\beta}{\frac{N I_{C 1}}{k(1-k) V_{C C}}+\frac{A_{v}}{\left(R_{C} \| R_{i 3}\right) A_{F}}} \tag{6}
\end{equation*}
$$

The small-signal AC voltage gain from $v_{i n}$ to $v_{e 2}$ is less than unity. Therefore, the AC signal swing at $v_{e 2}$ can be assumed to be limited by the maximum input signal amplitude ($V_{i, \max }$), which can be calculated by dividing the required output swing to the gain specification. To avoid clipping at $v_{e 2}$, the DC bias at $V_{E 2}$ can be chosen as

$$
\begin{equation*}
V_{E 2} \geq V_{E 1}+V_{C E, s a t}+V_{i, \max } \tag{7}
\end{equation*}
$$

To maximize the available output swing, load-line analysis needs to be performed. Assume that Q_{2} 's DC operating point is set to $\left(I_{C 2}, V_{C E 2}\right)$. From Fig. 1

$$
\begin{equation*}
V_{C C} \approx I_{C 2} R_{C}+V_{C E 2}+V_{E 2} \Rightarrow V_{C E 2}=V_{C C}-I_{C 2} R_{C}-V_{E 2} \tag{8}
\end{equation*}
$$

[^0]Please note that the above expression is valid only if $I_{C 2} \gg I_{B 3}$. Since $I_{C 3}$ is usually a large current, this requirement usually determines the minimum amount of $I_{C 2}$. AC load line equation for Q_{2} (see Fig. 2) can be obtained as

$$
\begin{equation*}
\frac{i_{c 2}-I_{C 2}}{V_{c e 2}-V_{C E 2}} \approx-\frac{1}{R_{C} \| R_{i 3}} \tag{9}
\end{equation*}
$$

Figure 2: AC load line

Evaluating the load-line equation at the point $\left(i_{c 2}, v_{c e 2}\right)=\left(0,2 V_{C E 2}-V_{C E, \text { sat }}\right)$,

$$
\begin{equation*}
\frac{0-I_{C 2}}{2 V_{C E 2}-V_{C E, s a t}-V_{C E 2}}=-\frac{1}{R_{C} \| R_{i 3}} \tag{10}
\end{equation*}
$$

which can be arranged as

$$
\begin{equation*}
I_{C 2}\left(R_{C} \| R_{i 3}\right)=V_{C E 2}-V_{C E, s a t} \tag{11}
\end{equation*}
$$

Substituting $V_{C E 2}$ from (8) into (11) results in

$$
\begin{equation*}
I_{C 2}=\frac{V_{X}}{R_{C}+\left(R_{C} \| R_{i 3}\right)}=I_{C 1} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{X}=V_{C C}-V_{E 2}-V_{C E, s a t} \tag{13}
\end{equation*}
$$

0 -to-peak voltage swing at the output can be calculated as

$$
\begin{equation*}
V_{s w}=I_{C 2}\left(R_{C} \| R_{i 3}\right) A_{F}=\frac{V_{X}}{2+\frac{R_{C}}{R_{i 3}}} A_{F} \tag{14}
\end{equation*}
$$

Substituting $I_{C 1}$ in (12) into (6), $R_{\text {in }}$ can be expressed as

$$
\begin{equation*}
R_{i n}=\frac{\beta\left(R_{C} \| R_{i 3}\right)}{\frac{N V_{X}}{k(1-k) V_{C C}} \frac{1}{2+\frac{R_{C}}{R_{i 3}}}+\frac{A_{v}}{A_{F}}} \tag{15}
\end{equation*}
$$

The final stage is an emitter follower, which should be designed to deliver the specified voltage swing to the load. Assuming large signals, KCL at the output node results in

$$
\begin{equation*}
i_{C 3}=I_{Q}+i_{\text {out }} \tag{16}
\end{equation*}
$$

where $i_{\text {out }}$ is a sine wave and I_{Q} is a DC current. Since $i_{C 3}>0$ for Q_{3} to be active, $i_{\text {out }}$ cannot be lower than $-I_{Q}$ during the negative cycle of the sine wave. Using the specifications for the output swing and load resistor, I_{Q} can be determined from

$$
\begin{equation*}
I_{Q} \geq \frac{0 \text {-to-peak output swing }}{R_{L}} \tag{17}
\end{equation*}
$$

Figure 3: DC current source

The current source can be designed using the circuit in Fig. 3, where I_{Q} can be calculated from

$$
\begin{equation*}
I_{Q}=\frac{V_{C C} \frac{R_{B 6}}{R_{B 5}+R_{B 6}}-0.7}{R_{E 3}} \tag{18}
\end{equation*}
$$

In general, all DC bias points in the circuit should be insensitive to variations in β. Therefore, $R_{B 3}, R_{B 4}, R_{B 5}$ and $R_{B 6}$ should be chosen such that:

$$
\begin{align*}
& I_{B 2} \ll I_{3} \tag{19}\\
& I_{B 4} \ll I_{5} \tag{20}
\end{align*}
$$

Design Procedure

1. Choose I_{Q} such that (17) is satisfied.
2. Since $I_{C 3}=I_{Q}$, calculate A_{F} and $R_{i 3}$ from (3) and (4).
3. Choose the value of $V_{E 1}$, and then find $V_{E 2}$ from (7).
4. Calculate V_{X} from (13), and k from $k=\left(V_{E 1}+0.7\right) / V_{C C}$. Also choose N such that $N \geq 10$.
5. Determine the minimum value of R_{C} using the specification for the desired input resistance ($R_{i n, d}$):

$$
\frac{\beta\left(R_{C} \| R_{i 3}\right)}{\frac{N V_{X}}{k(1-k) V_{C C}} \frac{1}{2+\frac{R_{C}}{R_{i 3}}}+\frac{A_{v}}{A_{F}}} \geq R_{i n, d}
$$

which can be arranged as

$$
R_{C}^{2}\left(\beta R_{i 3}-R_{i n, d} \frac{A_{v}}{A_{F}}\right)+R_{C}\left(2 \beta R_{i 3}-3 R_{i n, d} \frac{A_{v}}{A_{F}}-Q R_{i n, d}\right) R_{i 3}-R_{i 3}^{2} R_{i n, d}\left(Q+2 \frac{A_{v}}{A_{F}}\right) \geq 0
$$

where

$$
Q=\frac{N V_{x}}{k(1-k) V_{C C}}
$$

6. Determine the maximum value of R_{C} using the specification for the desired output voltage swing $\left(V_{s w, d}\right)$:

$$
\frac{V_{X}}{2+\frac{R_{C}}{R_{i 3}}} A_{F} \geq V_{s w, d} \Rightarrow R_{C} \leq R_{i 3}\left(\frac{V_{X} A_{F}}{V_{s w, d}}-2\right)
$$

7. Choose R_{C}, then calculate $I_{C 2}=I_{C 1}$ from (12). Make sure that $I_{C 2} \gg I_{Q} / \beta$, if not, repeat the steps above (as many steps as necessary) to obtain an acceptable $I_{C 2}$.
8. Calculate R_{B} and R_{E}

$$
R_{B}=\frac{\beta V_{C C}}{N I_{C 1}} \quad, \quad R_{E}=\frac{V_{E}}{I_{C 1}}
$$

9. Find R_{G} from (2), which can be arranged as

$$
R_{G}=\frac{1}{\frac{1}{\left(\frac{R_{C} \| R_{i 3}}{A_{v}} A_{F}-r_{e 1}\right)}-\frac{1}{R_{E}}}
$$

10. Choose $V_{E 4}$ such that $V_{E 4}+V_{C E, \text { sat }} \leq V_{E 3}-V_{\text {out }, 0-\text { to-peak }}$, then calculate $R_{E 3} \approx V_{E 4} / I_{Q}$.
11. Find $R_{B 3}, R_{B 4}, R_{B 5}$ and $R_{B 6}$ while (19) and (20) are satisfied.

Calculations and Simulations

Using 2N3904 BJTs, design the 3-stage amplifier in Fig. 1 with the following specifications:

$V_{C C}=5 \mathrm{~V}$	$R_{L}=100 \Omega$	Operating frequency: 5 kHz
$\left\|A_{V}\right\|=30$	$R_{\text {in }} \geq 3 \mathrm{k} \Omega$	Zero-to-peak un-clipped swing at $V_{\text {out }} \geq 1.5 \mathrm{~V}$
$l_{\text {supply }} \leq 20 \mathrm{~mA}$	$V_{E 1} \geq 1 \mathrm{~V}$	$V_{E 4} \geq 0.5 \mathrm{~V}$

1. Show all your calculations, design procedure, and final component values.
2. Verify your results using a circuit simulator. Submit all necessary simulation plots showing that the specifications are satisfied. Also provide the circuit schematic with DC bias points annotated.
3. Using a circuit simulator, perform Fourier analysis and determine the input and the output signal amplitudes resulting in 5\% total harmonic distortion (THD) at the output. Provide the simulation results.

Measurements

1. Construct the amplifier you designed.
2. Measure I_{C}, V_{C}, V_{B} and V_{E} for all transistors. If any $D C$ bias value is significantly different than the one obtained from simulations, modify your circuit to get the desired DC bias before you move onto the next step.
3. Measure $I_{\text {supply }}, A_{v}$ and $R_{i n}$.
4. Measure the maximum un-clipped output signal amplitude.
5. Find the input signal amplitude resulting in 5% THD measurement at the output.

Report

1. Include calculations, schematics, simulation plots, and measurement plots.
2. Prepare a table showing calculated, simulated and measured results.
3. Compare the results and comment on the differences.

Demonstration

1. Construct the amplifier you designed on your breadboard and bring it to your lab session.
2. Your name and UIN must be written on the side of your breadboard.
3. Submit your report to your TA at the beginning of your lab session.
4. Measure $I_{\text {supply }}, A_{v}$ and $R_{i n}$.
5. Apply the input signal resulting in 5% THD at the output from your earlier measurements. Show the input and output waveforms, and THD measurement at the output.

[^0]: (c) Department of Electrical and Computer Engineering, Texas A\&M University

