(4) a)

$$
\begin{aligned}
\because \quad V_{R S} & =200 \mathrm{mV} \\
\therefore I_{D S} R_{S} & =200 \mathrm{mV} \\
I_{D S} & =\frac{0.2}{100} \\
I_{D S} & =2 \mathrm{~mA} .
\end{aligned}
$$

For m_{1} to stay in saturation,

$$
\begin{aligned}
V_{D S} & \geqslant V_{G S}-V_{T H} . \\
\because \quad V_{D S} & =V_{D}-V_{S} \\
& =\left[1.8-\left(2 \times 10^{-3}\right) \times 500\right]-0.2 \\
& =0.6, \\
\therefore \quad V_{G S}- & V_{T H} \leqslant 0.6,
\end{aligned}
$$

Since $\quad I_{D S}=\frac{1}{2}\left(\mu_{n} C_{0 x}\right)\left(\frac{w}{2}\right)\left(V_{a s}-V_{T H}\right)^{2}$,
$\left(\frac{w}{L}\right)$ is min. when $\left(V_{a s}-V_{\text {TiA }}\right)$ is max,
$\therefore \min \left(\frac{w}{L}\right)$, is when $\left(V_{a s}-V_{T H}\right)=0.6 \mathrm{~V}$

$$
\begin{aligned}
& \quad 2 \times 10^{-3}=\frac{1}{2}\left(200 \times 10^{-6}\right)\left(\frac{\omega}{L}\right),(0.6)^{2} \\
& \therefore \min .\left(\frac{w}{L}\right)_{1}=56
\end{aligned}
$$

b)

$$
\begin{align*}
\text { With }\left(V_{G S}-V_{T H}\right) & =0.6, \\
V_{G S} & =1, \\
\therefore V_{G} & =1+V_{S} \\
V_{G} & =1.2 \mathrm{~V}, \\
\text { ie. } 1.8 \times \frac{R_{2}}{R_{1}+R_{2}} & =1.2 \mathrm{~V}, \\
\frac{R_{2}}{R_{1}} & =2 \tag{1}
\end{align*}
$$

Input impedance $=R_{2} / / R_{1}$,

$$
\begin{equation*}
\text { ie. } R_{2} / / R_{1} \geqslant 30 k \Omega \tag{2}
\end{equation*}
$$

Set $R_{1}=50 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ will satisfy both (1) \& (2).
(5)

$$
\begin{aligned}
V_{S} & =V_{R S} \\
& =I_{D_{1}}(200)=0.1 \mathrm{~V} \\
I_{D S} & =\frac{1}{2} \mu_{M} C_{0 \times}\left(\frac{\mathrm{W}}{2}\right),\left(V_{G S}-V_{T H}\right)^{2} \\
0.5 m A & =\frac{1}{2}\left(200 \times 10^{-6}\right)\left(\frac{20}{0.18}\right)\left(V_{G S}-V_{T H}\right)^{2} \\
\therefore V_{G S} & =0.612 \mathrm{~V} \\
\therefore V_{G} & =0.612 \times 0.1 \\
& =0.712 . \\
\because V_{G} & =\frac{V_{D_{D}}-I_{R_{1}} \times R_{1}}{} \\
R_{1} & =\frac{21.76 \mathrm{k} \Omega}{} \\
\text { and } V_{G S} & =I_{R_{2}} \times R_{2} . \\
\therefore R_{2} & =\frac{0.712}{0.05 \times 10^{-3}} \\
& =14.24 \mathrm{~K} \Omega
\end{aligned}
$$

(8) With out defects,

$$
\begin{aligned}
V_{a s} & =1.8 \mathrm{~V} \\
\therefore . V_{D S} & =(1.8-0.1) \mathrm{V} \\
& =1.7 \mathrm{~V} \\
I_{D S} & =\frac{(1.8-1.7) \mathrm{V}}{2000 \Omega}=0.05 \mathrm{~mA} . \\
\therefore 0.05 \mathrm{~mA} & =\frac{1}{2}\left(200 \times 10^{-6}\right)\left(\frac{\omega}{c}\right)(1.8-0.4)^{2} \\
\therefore\left(\frac{\omega}{L}\right) & =0.255
\end{aligned}
$$

b) With defects,

$$
\begin{align*}
& V_{G S}=V_{D S}+50 \mathrm{mV} \\
& \therefore V_{R_{P}}=50 \mathrm{mV} \\
& I_{R P}=\frac{50 \mathrm{mV}}{R_{P}} \\
& V_{G S}=1.8 \mathrm{~V}-\frac{0.05 \mathrm{~V}}{R_{P}} \times 30 \mathrm{k} \Omega=(1) \tag{1}\\
& \because V_{D D}-\left(I_{D S}-\frac{50 \mathrm{mV}}{R_{P}}\right) 2 \mathrm{k} \Omega=V_{D S} \\
& V_{D D}-\left(I_{O S}-\frac{50 \mathrm{mV}}{R_{P}}\right) 2 \mathrm{k} \Omega=V_{G S}-50 \mathrm{mV}
\end{align*}
$$

$$
\begin{aligned}
\because \quad I_{D S} & =\frac{1}{2}\left(\frac{w}{L}\right)\left(\mu_{n} C_{O X}\right)\left(V_{G S}-V_{T H}\right)^{2} \\
& =\frac{1}{2}(0.255)\left(200 \times 10^{-6}\right)\left(V_{G S}-0.4\right)^{2} \\
& =2.55 \times 10^{-5}\left(V_{G S}-0.4\right)^{2}
\end{aligned}
$$

\therefore From (2),

$$
\begin{gathered}
1.8-\left[2.55 \times 10^{-5}\left(V_{h s}-0.4\right)^{2}-\frac{0.2}{R_{p}}\right] 2000 \\
=V_{G 3}-0.05
\end{gathered}
$$

$$
\begin{gathered}
\text { From 0. } \frac{0.05}{R_{p}}=\frac{1.8-V_{a s}}{30000} \\
\therefore 1.8-\left[0.051\left(V_{a s}-0.4\right)^{2}-\frac{1.8-V_{a s}}{15}\right]=V_{a s}-0.3 \\
1.85-0.051 V_{a s}{ }^{2}+0.0408 V_{a s}-0.00816+\frac{1.8-V_{a s}}{15}=V_{a s} \\
29.4276-15.388 V_{a s}-0.765 V_{a s}^{2}=0 \\
\therefore V_{a s}=1.76 \mathrm{~V} / \mathrm{V} \\
R_{p}= \\
\frac{0.05 \times 30000}{1.8-1.76} \\
\approx 36.3 \mathrm{k} \Omega
\end{gathered}
$$

7 who defect $V_{G S}=V_{0 s} \Longrightarrow M_{G}=V_{D}$

$$
\begin{aligned}
& I_{D}=\frac{\mu \operatorname{Cos}}{2} \frac{N}{L}\left(U_{G S}-V_{T}\right)^{2} \\
& \frac{W}{L}=\frac{2 I_{0}}{\mu \cos \left(U_{\text {LS }}-U_{T}\right)^{2}}=\frac{2\left(0.6_{\mathrm{na}} A\right)}{(2 \cos \mu)(1.2-0.12-0.4)^{2}} \\
& \frac{W}{L}=13.0
\end{aligned}
$$

$w /$ defect $V_{G S}=V_{D S}+V_{T H}$

$$
\begin{aligned}
& I_{R P}=\operatorname{lan} A-468 \mu A=532 \mu A \\
& R_{P}=\frac{V_{R P}}{I_{R P}}=\frac{0,6 \mathrm{U}}{532 \mu \mathrm{~A}}=1,13 \mathrm{KN}
\end{aligned}
$$

7.20

$$
\begin{aligned}
& \left|A_{v}\right|=10 \mathrm{w} / I_{0}=0.5 \mathrm{~mA} \\
& \lambda_{1}=0.10^{-1}, \lambda_{2}=0.15 \mathrm{~V}^{-1}
\end{aligned}
$$

a. $\frac{w}{L_{1}}=$?

$$
\begin{aligned}
& \left|A_{V}\right|=g_{m_{1}}\left(r_{01} / / r_{02}\right)=\frac{g_{\mu 1}}{g_{01}+g_{02}} \\
= & \frac{\sqrt{\mu_{N}+x\left(\frac{N}{L}\right)_{1} 2 I_{0}}}{\lambda_{1} I_{0}+\lambda_{2} I_{0}} \\
\Rightarrow & \left(\frac{N}{I}\right)_{1}=\frac{A_{v}^{2} I_{b}\left(\lambda_{1}+\lambda_{2}\right)^{2}}{2 \mu_{N}(0 x}=\frac{(10)^{2}\left(0.5_{m} A\right)(0.1+0.15)^{2}}{2(200 \mu)} \\
& \left(\frac{W}{L}\right)_{1}=7.81
\end{aligned}
$$

$b_{1}\left(\frac{w}{L}\right)_{2}=\frac{20}{0.18} \Rightarrow V_{b}=$?

$$
\begin{aligned}
& I_{b}=\frac{\mu_{e} \operatorname{cox}_{2}^{2}}{\left.L_{L}\right)_{2}}\left(V_{\text {sa }}-\left|V_{\text {trer }}\right|\right)^{2} \\
& =\frac{\mu_{p} \operatorname{cox}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{b}-\left|V_{T+P}\right|\right)^{2} \\
& V_{b}=V_{D D}-\left|V_{T+D}\right|-\sqrt{\frac{2 I_{0}}{\mu \operatorname{Lox}\left(\frac{N}{L}\right)_{2}}} \\
& V_{b}=1.1 \mathrm{~V} \\
& =1.8 \mathrm{~V}-|-0.4 \mathrm{~V}|-\sqrt{\frac{2(0,5 \mathrm{sA})}{1 \log _{\mu}\left(\frac{20}{0.18}\right)}}=1.1 \mathrm{~V}
\end{aligned}
$$

(24). To get higher voltage fain,
(a) is preferred.

For the same dimensions of transistors and same bias current,
(a) has a high "Om" than (b).

$$
\begin{aligned}
\because \rho_{m_{1}} & >\rho_{m_{2}} \\
& \text { (since } \left.\mu_{n} C_{0 x}>\mu_{p} C_{0 x}\right)
\end{aligned}
$$

while (roillvor) is the same for both cases.
(28) a). $A_{v}=-\rho_{m} r_{0,} / 1 z_{2}$, where Z_{2} is the impedance presented by m_{2}.

To find z_{2}, apply a test voltage $\left(V_{T}\right)$ ae the drain of M_{2} :

From the small-signal model,

$$
\begin{aligned}
i_{t} & =\rho_{m_{2}} v_{t}+\frac{v_{t}}{r_{02}} \\
z_{2} & =\frac{v_{t}}{i_{t}}=r_{02} / / \frac{1}{\rho_{m_{2}}} \\
\therefore A_{v} & =-\rho_{m_{1}}\left(r_{01} / / r_{02} / / \frac{1}{\rho_{m 2}}\right) \\
\text { b) Av} & =-\rho_{m_{1}}\left(r_{01} \| z_{2} / / z_{3}\right)
\end{aligned}
$$

where Z_{2} and Z_{3} are impedances presented by m_{2} and m_{3} respectively.

From (a) $z_{3}=r_{03} / / \frac{1}{\mathrm{sm}_{3}}$
By inspection, $Z_{2}=r_{02}$

$$
\therefore A_{v}=-\rho_{m_{1}}\left(r_{01} / / r_{02} / / r_{03} / / \frac{1}{m_{3}}\right)
$$

c) $\quad A_{r}=-f m_{1} r_{0}, / / z_{2} / / z_{3}$.

Similar to (b),

$$
\begin{aligned}
z_{2} & =r_{02}, \\
\text { and } z_{3} & =r_{03} / / \frac{1}{g_{m_{3}}}
\end{aligned}
$$

(the small signal model of M_{3} in this case is equivalent to that of M_{2} in (a))

$$
\therefore A_{V}=-\rho_{m_{1}}\left(r_{01} / / r_{02} / / r_{03} / / \frac{1}{\rho_{m 3}}\right)
$$

d). M_{2} is in CS arrangement. (similar to (c)).

$$
\begin{aligned}
& A_{5}=\rho m_{2} r_{02} / / z_{1} / / z_{3} \\
& z_{3}=\frac{1}{\rho m_{3}} / / r_{03} \\
& z_{1}=r_{01} \\
& \therefore A_{v}=\rho_{m_{2}}\left(r_{02} / / r_{01} / / \cdot \frac{1}{\left.\rho_{m_{3}} / / r_{03}\right)}\right.
\end{aligned}
$$

e). $A_{v}=\operatorname{sm2}\left(\begin{array}{lllll}r_{02} & / / & z_{1} \mid / Z_{3}\end{array}\right)$

$$
\begin{aligned}
& z_{1}=r_{01} \\
& z_{3}=\frac{1}{\rho_{m_{3}}} / / r_{03}
\end{aligned}
$$

(recall: impedance looking into source $=\frac{1}{\rho_{m}}$)

$$
\therefore A_{v}=f_{m_{2}}\left(r_{02} / / r_{01} / / \frac{1}{g_{m 3}} / / r_{03}\right)
$$

(28) f) $A_{v}=-\rho_{m},\left(r_{0}, \| z_{2}\right)$,
where Z_{L} is the impedance depicted as follows:

The equivalent small-signal model is:

$$
i_{t}=\rho_{m_{2}} v_{t}+\frac{v_{x}}{r_{02}} .
$$

$V_{x}=V_{t}-R_{D} i_{t}$

$$
\therefore i_{t}=f m_{2} v_{t}+\frac{v_{t}}{r_{02}}-\frac{R_{D} i_{t}}{r_{02}}
$$

$$
\begin{aligned}
i_{T}\left(1+\frac{R_{0}}{r_{02}}\right) & =v_{t}\left(\rho_{m_{2}}+\frac{1}{r_{02}}\right) \\
\frac{V_{t}}{i_{t}} & =\frac{r_{02}+R_{p}}{\rho_{m_{2}} r_{02}+1} \\
\therefore A_{v} & =-\rho_{m_{1}}\left(r_{01} / / \frac{r_{02}+R_{D}}{1+\rho_{m_{2}} r_{02}}\right)
\end{aligned}
$$

7.32

We can express the gain

$$
A_{v}=\frac{v_{0}}{v_{i}}=G_{m} R_{\text {Out }}
$$

For Gm

$$
V_{x}=-i_{s c} R_{s}
$$

KCL © output

$$
\begin{aligned}
& i_{s c}+g_{m}\left(v_{i}+i_{s c} R_{s}\right)+i_{s c} R_{s} g_{0}=0 \\
& i s c\left[1+\left(g_{m}+g_{0}\right) R_{s}\right]=-g_{m} v_{i} \\
& G_{m}=\frac{i_{s c}}{v_{i}}=-\frac{g_{m}}{1+\left(g_{m}+g_{0}\right) R_{s}} \\
& \text { For Rout } \\
& \left.\sqrt{R_{1} R_{\Delta}} R_{\text {out }}=R_{0}\right)\left[\left[r_{0}+R_{s}+g_{m} r_{0} R_{s}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{V}=G_{m} R_{\text {out }} \\
&=-\left[\frac{g_{m}}{1+\left(g_{m}+g_{0}\right) R_{s}}\right]\left[R_{0} \|\left[r_{0}+R_{s}+g_{m} r_{0} R_{s}\right]\right] \\
& W / g_{m} r_{0}=\frac{g_{m}}{g_{0}}>1 \\
& \approx=\left[\frac{g_{m}}{1+g_{m} R_{s}}\right]\left[R_{\Delta} \|\left[r_{0}+g_{m} r_{0} R_{s}\right]\right] \\
& \text { OK to just have this term, as this } \\
& \text { often dominates }
\end{aligned}
$$

37
a)

$$
\begin{aligned}
\mid \text { Voltage gain } \mid & =\rho_{m} R_{D} \\
& =5 \\
\therefore \rho_{m} & =\frac{5}{500} \\
& =10 \mathrm{~ms} \\
& =\sqrt{2\left(200 \times 10^{-6}\right)\left(\frac{w}{L}\right) \times 10^{-3}} \\
\therefore \frac{w}{L} & =250
\end{aligned}
$$

b)

$$
\begin{aligned}
V_{D} & =1.8-500 \times 10^{-3} \\
& =1.3 \mathrm{~V}
\end{aligned}
$$

T_{0} obtain $V_{D S} \geqslant V_{\text {GS }}-V_{T H}+0.2$,

$$
\begin{aligned}
& V_{0} \geqslant V_{G}-0.2 \\
& \therefore \quad V_{G} \leqslant 1.5
\end{aligned}
$$

Also, $\quad I_{R_{1}+R_{2}}=0.1 \times 10^{-3} \mathrm{~A}$.

$$
\begin{aligned}
\therefore \quad R_{1}+R_{2} & =\frac{1.8}{0.1 \times 10^{-3}} \\
& =18 \mathrm{k} \Omega .
\end{aligned}
$$

choose $R_{2}=15 \mathrm{k} \Omega$ \& $R_{1}=3 \mathrm{k} \Omega$
C) With twice of ($\omega / 2$). M, will go further away from triode. As $(\mathrm{W} / 4)$ double, \& $I_{\text {bias }}$ is fixed by the current source, $V_{G s}$ is forced to decrease (So M_{1} will have same $I_{D S}$). Thus, ($V_{G S}-V_{T 4}$) decreases, and $V_{0 s}$ can be allowed to drop more before m, goes into triode.

Gain will be increased by $\sqrt{2}$, because fain $\alpha f m$, and $f_{m} \propto \sqrt{h / 2}$.
(44)
a) Voltage gain $(A v)=\left[\frac{\frac{1}{\rho_{m_{1}}}}{R_{s}+\frac{1}{\rho_{m_{1}}}}\right] \frac{\rho_{m_{1}}}{\rho_{m_{2}}}$

$$
=\frac{\rho_{m_{1}} / \rho_{m_{2}}}{1+\rho_{m_{1} B_{1}} /}
$$

b) Voltage fain $\left(A_{v}\right)=\rho_{m}, Z_{2}$
(similar to prob. $32(b)$)

$$
=\frac{\rho_{m_{1}}}{\rho_{m_{2}}}
$$

c). Voltage fain $=\left[\frac{\frac{1}{\rho_{m_{1}}} / / R_{1}}{R_{s}+\frac{1}{\rho_{m_{1}}} / / R_{1}}\right] \frac{\rho_{m_{1}}}{\rho_{m_{2}}}$
d)

$$
\begin{aligned}
& \text { Voltage pain }=\rho_{m},\left[R_{D}+r_{03} / / \rho_{m_{2}}\right] \text {, } \\
& \because r_{03}=\infty \text {, } \\
& \rho_{\text {ain }}=\rho_{m_{1}}\left[R_{D}+\frac{1}{\rho_{m_{2}}}\right] \text {. }
\end{aligned}
$$

e) voltage pain $=\rho_{m_{1}}\left[R_{0}+\frac{1}{\rho_{m_{2}}}\right]$
(48) The smalli-sipnal model is:

$$
\begin{aligned}
\because-i_{0} & =i_{1}+i_{2}+i_{3} \\
-\rho_{m}\left(v_{\rho}-v_{\text {in }}\right) & =\frac{v_{\text {one }}}{R_{2}+R_{1}}+\frac{v_{0 n}-v_{\text {in }}}{R_{3}+R_{4}}+\frac{V_{0 n}}{R_{1}} \\
\rho_{m}\left(V_{i n}-\frac{R_{1}}{R_{1}+R_{2}} v_{\text {ont }}\right) & =v_{\text {ont }}\left(\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}+\frac{1}{R_{0}}\right)-\frac{V_{\text {in }}}{R_{3}+R_{4}} \\
V_{\text {in }}\left(\rho_{m}+\frac{1}{R_{3}+R_{4}}\right) & =V_{\text {on+ }}\left(\frac{\rho_{m} R_{1}+1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}+\frac{1}{R_{0}}\right) \\
\frac{V_{\text {ont }}}{V_{\text {in }}} & =\frac{\left(\rho_{m}+\frac{1}{R_{3}+R_{4}}\right)}{\frac{1}{R_{0}}+\frac{1}{R_{3}+R_{4}}+\frac{\rho_{m} R_{1}+1}{R_{1}+R_{2}}}
\end{aligned}
$$

(55) a) $A_{v}=\frac{r_{01} / /\left(R_{s}+r_{02}\right)}{\frac{1}{\rho_{m_{1}}}+r_{01} \|\left(R_{s}+r_{02}\right)}$
b) $A_{v}=\frac{r_{01} / / R_{L}}{\frac{1}{g_{m}}+\left(r_{01} / / R_{1}\right)}$
where R_{L} is

$$
\begin{aligned}
R_{L} & =\left(1+\rho_{m_{2}} r_{02}\right) R_{s}+r_{02} E g .(7.110) \\
\therefore \quad A v & =\frac{r_{01} / 1\left[\left(1+\rho_{m_{2}} r_{02}\right) R_{s}+r_{02}\right]}{\frac{1}{\rho_{m_{1}}}+r_{01} / 1\left[\left(1+\rho_{m_{2}} r_{02}\right) R_{s}+r_{02}\right]}
\end{aligned}
$$

c). Ar $=\frac{r_{01} / / \frac{1}{\rho_{m_{2}}}}{\frac{1}{\rho_{m_{1}}}+\left(r_{01} / / \frac{1}{\rho_{m_{2}}}\right)}$
d) $\quad A_{v}=\frac{r_{01} \cdot / / R_{2}}{\frac{1}{\rho_{m_{1}}}+\left(r_{01} / / R_{2}\right)}$
where R_{L} is:

(c) Finding R_{2} with small-signal model:
(cont'd)

$$
R_{L}=\frac{\sqrt{t}}{i_{t}}
$$

where $i_{t}=\frac{V_{t}}{r_{O_{2}}}+\rho_{m_{2}} v_{1}+\frac{v_{t}}{R_{1}+R_{2}}$

$$
\begin{aligned}
& =\frac{v_{t}}{r_{02}}+\frac{\rho_{m_{2}} R_{2} v_{t}}{R_{1}+R_{2}}+\frac{v_{t}}{R_{1}+R_{2}} \\
\therefore R_{L} & =\frac{r_{02}\left(R_{1}+R_{2}\right)}{R_{2}+R_{1}+r_{02}+\rho_{m_{2}} r_{02} R_{2}} \\
\therefore A_{v} & =\frac{r_{01} / / \frac{r_{02}\left(R_{1}+R_{2}\right)}{R_{2}+R_{1}+r_{02}+\rho_{m_{2}} r_{02} R_{2}}}{\frac{1}{\rho_{m 1}}+r_{01} / / \frac{r_{02}\left(R_{2}+R_{1}\right)}{R_{2}+R_{1}+r_{02}+\rho_{m 2} r_{02} R_{2}}}
\end{aligned}
$$

e) $\quad A_{v}=\frac{r_{0_{2}} / /\left(\frac{1}{\rho_{m 1}} / / r_{0_{3}}\right)}{\frac{1}{\rho_{m_{2}}}+r_{0_{2}}\left(\frac{1}{\rho_{m_{1}}} / / r_{0_{3}}\right)}$
f) $A_{v}=\frac{r_{01} / /\left[\left(1+\rho m_{2} r_{02}\right) r_{03}+r_{02}\right]}{\frac{1}{\rho_{m 1}}+\left\{r_{01} / /\left[\left(1+\rho_{m_{2}} r_{02}\right) r_{03}+r_{02}\right]\right\}}$

