ECEN326: Electronic Circuits Spring 2022

Lab 1 Graphical Design Approach

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Common Emitter Amp w/ Emitter Resistor

Typical Design Specifications

- Loaded voltage gain, A_v
- Max output swing, v_{omax}
 - This must be satisfied at a given linearity (total harmonic distortion)
- Input resistance, R_{in}
- Power Supply, V_{CC}
- Min Emitter Voltage for β robustness, V_{E}

How to set DC Biasing Conditions?

- In order to meet all design specifications, the DC biasing conditions (I_C, R_C) must be set appropriately
- Can transform design specifications into functions of $I_C \& R_C$ and graph them to find acceptable solution space

R_{in}, V_{CC}, & Neg. v_{omax} Specifications

- $R_{in} = kR_B \left\| (1-k)R_B \right\| \left\| (\beta+1)(r_e + R_E \| R_G) \right\| \approx \beta \left(R_E \| R_G \right)$ $R_E \left\| R_G \approx \frac{R_{in}}{\beta} \right\|$
- Input resistance is primarily set by R_E||R_G

R_{in} , V_{CC} , & Neg. v_{omax} Specifications

 Need a minimum V_{CE} to keep transistor in active mode with maximum negative swing

Set $V_{CE \min} = 300 mV$ * Note if the specs are relaxed enough, it is often good to set $V_{CE \min} = 500 mV$ for margin.

V_{CC} Spec (w/ max negative swing)

$$V_{CC} = V_E + V_{CE\min} + v_{o\max} + I_C R_C$$
$$V_{CE\min} = V_{CC} - I_C R_C - v_{o\max} - V_E \ge 300 mV$$

R_{in} , V_{CC} , & Neg. v_{omax} Specifications

• Can solve for I_C

$$I_C \leq \frac{V_{CC} - v_{o\max} - 0.3V - V_E}{R_C}$$

• Minimum negative AC Swing constraint sets an upper bound on $\rm I_{\rm C}$

Pos. v_{omax} Specification

 Need to insure with a positive swing that the output signal doesn't clip the power supply

$$V_{CC} - I_C R_C + v_{o\max} \le V_{CC}$$

$$I_C \ge \frac{v_{o\max}}{R_C}$$

- Positive AC Swing constraint sets a lower bound on $\rm I_{\rm C}$
- Additional linearity constraint (harmonic distortion) generally sets a tighter bound

Gain Specification

$$I_C \geq \frac{|A_v|V_{th}}{R_C \left\| R_L - \frac{|A_v| \left(R_E \| R_G \right)}{\alpha} \right\|} = \frac{|A_v|V_{th}}{R_C \left\| R_L - \frac{|A_v|R_{in}}{\alpha\beta} \right\|}$$

Gain constraint sets a lower bound on I_C

Harmonic Distortion Specification

 Need a minimum amount of bias current to insure that the AC swing doesn't distort

Model a as a system which distorts

$$i_c = av_{be} = a_1v_{be} + a_2v_{be}^2 + a_3v_{be}^3 + \dots$$

where $a_1 = g_m$, $a_2 = \frac{1}{2}\frac{I_{CQ}}{V_{th}^2}$, \dots
Here $v_{be} = v_b - v_e \approx v_b - fi_c$
where $f = R_E$

*This analysis is for a general CE Amp, in our specific circuit $R_C \Rightarrow R_C || R_L$ and $R_F \Rightarrow R_F || R_G$

Harmonic Distortion Specification

We want to express i_c as a function of v_b because that is our input

$$i_c = bv_b = b_1v_b + b_2v_b^2 + b_3v_b^3 + \dots$$

Can show that *

$$b_1 = \frac{g_m}{1 + g_m R_E}, \quad b_2 = \frac{1}{2} \frac{I_{CQ}}{V_{th}^2 (1 + g_m R_E)^3}, \quad \dots$$

 For single-ended amplifiers with low-distortion, HD2 will dominate the distortion terms
 *This analysis i

The second - order harmonic distortion is

$$HD2 = \frac{1}{2} \frac{b_2}{b_1^2} i_{c \max} = \frac{1}{4} \left(\frac{1}{1 + g_m R_E} \right) \left(\frac{i_{c \max}}{I_{CQ}} \right)$$

*This analysis is for a general CE Amp, in our specific circuit $R_C \Rightarrow R_C || R_L$ and $R_E \Rightarrow R_E || R_G$

Harmonic Distortion Specification

 HD2 will dominate, but is not the only distortion term, so you need to use a slightly larger current or put some margin in the HD2 value relative to the THD spec

Key CE Amp Design Equation Summary

Neg. Swing, Rin,
$$V_{CC}$$
: $I_C \leq \frac{V_{CC} - v_{o \max} - 0.3V - V_E}{R_C}$
Pos. Swing: $I_C \geq \frac{v_{o \max}}{R_C}$
Gain: $I_C \geq \frac{|A_v|V_{th}}{R_C \|R_L - \frac{|A_v|R_{in}}{\alpha\beta}}$
Harmonic Distortion: $I_C \geq \frac{1}{2} \sqrt{\frac{V_{th}v_{o \max}\beta}{(R_C \|R_L)R_{in}HD2}}$

Design Example - Specifications

- $|A_v| \ge |-20|$
- $R_{in} \ge 10 k\Omega$
- $R_L = 20k\Omega$
- $V_{\text{omax}} = 1V_{\text{pk}} \text{ w/ THD} \le 5\% \text{ (-26.0dB)}$
- $V_{CC} = 5V$
- V_E ≥ 0.5V
- Isupply ≤ 1.5 mA
- Nominal operation at 5kHz

Design Equation Plots

• Chosen design point is $I_c=1mA$, $R_c=3k\Omega$

DC Operating Points

- R_E is set with $V_E = I_E R_E$
- R_G is set as R_{in}/β
- DC bias points must be reasonable for the circuit to work as designed!

• $|A_v| = 29.4 dB = 29.5 V/V$

AC Gain

 R_{in}

• $R_{in} = 80.7 dB\Omega = 10.8 k\Omega$

Transient Response

- Response with 35.5mV_{pk} input signal
- Signal is beginning to compress

Total Harmonic Distortion

• THD = 3.16% = -30dB

$\mathsf{R}_{\mathsf{out}}$

• $R_{out} = 69.4 dB\Omega = 2.95 k\Omega \approx R_C$

Lab1 Design Specs

- $|A_v| \ge |-15|$
- $R_{in} \ge 5k\Omega$
- $R_L = 10 k\Omega$
- $V_{\text{omax}} = 1V_{\text{pk}} \text{ w/ THD} \le 5\%$ (-26.0dB)
- $V_{CC} = 5V$
- V_E ≥ 0.5V
- Isupply $\leq 4mA$
- Nominal operation at 5kHz