ECEN325: Electronics Spring 2024

Semiconductor pn Junction Diode

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW3 Due Feb 22
- Exam 1 Feb 29
 - One double-sided 8.5x11 notes page allowed
 - Bring your calculator
 - Covers Linear Circuit Analysis & Opamps

Reading

- Razavi Ch2 (optional)
 - Basic semiconductor device physics, which is useful to understand how diodes work
 - Covered in more detail in ECEN 370
- Razavi Ch3
 - Diode models and circuits

Agenda

- Semiconductor pn junction diodes
- Diode current-voltage (I-V) characteristics
- Constant voltage drop model
- Solving circuits with diodes
- Diode rectifier circuits

Semiconductors

- A semiconductor is a material whose conductivity lies somewhere between an insulator and a conductor
- Example: Pure or "intrinsic" Silicon (Si) has 4 valence electrons and is not a very good conductor
- A semiconductor's conductive properties can be changed by "doping" the material with either ntype dopants (Phosphorous) or p-type dopants (Boron)
- A diode is formed at the boundary or junction of a p and n type semiconductor

Semiconductor pn Junction Diode Physical Schematic

Diffusion, Drift Current, & Barrier Voltage

- "Majority-Carrier" Diffusion Current, I_D
 - Caused by majority carriers diffusing into other region
 - Near the junction, holes diffusing into the n-region recombine with free electrons, deplete the carriers close to the junction, and form a positive charged region
 - Similarly, electrons diffusing into the p-region recombine with free holes, deplete the carriers close to the junction, and form a negative charged region
- This charge separation creates a "Barrier Voltage" which limits the diffusion current
- "Minority-Carrier" Drift Current, I_s
 - Caused by thermally generated minority carriers sweeping across the junction due to the E-field

Operation w/ Different Biases

- Reverse-Biased, I_S>I_D, Weak Minority Carrier Drift Current
- Forward-Biased, I_D>>I_S, Strong Majority Carrier Diffusion Current

I-V Characteristic

Reverse Breakdown

Anode • For large negative voltages, the previous exponential equation predicts that the reverse bias **I**d current should saturate at $-I_s$ However, with a large negative Cathode voltage " $-V_7$ " the diode "breaks down" and a large negative current $-V_Z$ exists 0 Most diodes should be designed to [Sedra/Smith] avoid this reverse-breakdown region Special diodes, called Zener diodes, are design to operate in reverse breakdown and used in applications such as voltage regulators

Constant-Voltage-Drop Model

Solving Circuits with Diodes

- 1. A diode will either be "on" or "off", resulting in 2 possibilities for each diode in the circuit
- 2. Assume 1 condition and solve the circuit
- **3.** Check solution for consistency with the diode model
- 4. If it is consistent, the solution is correct and you are done
- 5. If not consistent, you need to solve the circuit with another possible condition

Diode Circuit Example #1

- Solve for Vout and Id
- First assume that the diode is "OFF", i.e. an open circuit

$$10 \text{mA} \begin{pmatrix} + \\ V_d = 10V \\ - \\ 1k\Omega \end{pmatrix} \downarrow I_d = 0A \\ 1k\Omega \end{pmatrix} \downarrow V_{\text{OUT}} = 10V$$

 $10 \text{mA} + V_d + I_d + I_d + I_k \Omega +$

 Are the diode I-V conditions consistent with the constantvoltage-drop model?

• $V_d = 10V$ and $I_d = 0A$

- This is not consistent with the diode model!
- We need to try another diode condition

Diode Circuit Example #1 (cont.)

- Now, $V_d = 0.7V$ and $I_d = 4.65$ mA
- This is consistent with the diode model!
- This is the correct solution

Rectifier Circuits

Half-Wave Rectifier

[Razavi]

For
$$V_{in} = V_p \sin \omega t$$

Peak $V_{out} = V_p - V_{D,on}$
Maximum Reverse Voltage = V_p

Half-Wave Rectifier Transfer Characteristic

- Only rectifies positive half of the input signal
- Lose one diode voltage drop from the peak value

Half-Wave Rectifier w/ a Filter Cap

How Much is the Ripple Voltage?

[Razavi]

For a properly designed filter : $t_3 - t_1 \approx T_{in}$ where T_{in} is the input period

$$V_{out}(t_3) = \left(V_p - V_{D,on}\right)e^{-\frac{T_{in}}{R_1C_L}}$$

Also R_1C_L should be >> $T \Longrightarrow e^{-\frac{T_{in}}{R_1C_L}} \approx 1 - \frac{T_{in}}{R_1C_L}$

Peak - to - Peak Ripple Voltage

$$V_R \approx \left(V_p - V_{D,on}\right) \left(1 - e^{-\frac{T_{in}}{R_1 C_L}}\right) \approx \left(V_p - V_{D,on}\right) \left(\frac{T_{in}}{R_1 C_L}\right)$$
$$V_R \approx \left(V_p - V_{D,on}\right) \left(\frac{T_{in}}{R_1 C_L}\right) = \frac{V_p - V_{D,on}}{R_1 C_L f_{in}}$$

What is the Peak Diode Current?

Full-Wave Rectifier

- Positive 1/2 cycle
 - Top diode on
- Negative 1/2 cycle
 - Bottom diode on

Full-Wave Rectifier Transfer Characteristic

- Rectifies all of the input signal
- Lose one diode voltage drop from the peak value

Bridge Rectifier

Bridge Rectifier Transfer Characteristic

- Rectifies all of the input signal
- Lose two diode voltage drops from the peak value

Full-Wave & Bridge Rectifier w/ a Filter Cap

- The capacitor only discharges for T/2
 - Results in 1/2 Cap size for a given ripple
 - Roughly 1/2 diode current due to smaller Cap

$$V_{R} = \frac{V_{P} - 2V_{D,on}}{2R_{L}C_{1}f_{in}} \qquad I_{P} = \frac{V_{P}}{R_{L}} \left(R_{L}C_{1}\omega_{in}\sqrt{\frac{2V_{R}}{V_{P}}} + 1\right)$$

Rectifier Trade-Offs

• Half-Wave Rectifier

- + Simplest design with fewest components
- Requires largest capacitor for a given ripple
- Full-Wave Rectifier
 - + Reduces capacitor size by 1/2 relative to half-wave
 - Requires center-tapped transformer
 - Maximum reverse voltage almost double that of half-wave
- Bridge Rectifier
 - + Reduces capacitor size by 1/2 relative to half-wave
 - + Save maximum reverse voltage as half-wave rectifier
 - Lose two diode voltage drops in peak value