ECEN325: Electronics Spring 2024

Lecture 1: Introduction

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Analog Circuit Sequence

Why is Analog Important?

- Naturally occurring signals are analog
- Analog circuits are required to amplify and condition the signal for further processing
- Performance of analog circuits often determine whether the chip works or not
- Examples
 - Sensors and actuators (imagers, MEMS)
 - RF transceivers
 - Microprocessor circuits (PLL, high-speed I/O, thermal sensor)

Integrated Circuits

[Bohr ISSCC 2009]

- Cellular Transceiver
 (0.13µm CMOS)
 - Considerable analog & digital
 - Instrumentation Amplifier (0.5µm CMOS)

Digital

- Mostly Analog
- Some Digital Control Logic

- 4-core Microprocessor (45nm CMOS)
 - Mostly Digital
 - Noteable analog blocks
 - PLL, I/O circuits, thermal sensor

[Sowlati ISSCC 2009]

[Pertijs ISSCC 2009]

The Power of CMOS Scaling

- Scaling transistor dimensions allows for improved performance, reduced power, and reduced cost/transistor
- Assuming you can afford to build the fab

Course Topics

- Linear circuit analysis
 - Laplace transform basics
 - Bode plots
- OpAmp circuits
 - Opamp properties
 - Amplifiers and basic filters
- Non-linear circuits
 - Large signal model
 - Small signal model
 - Diodes, BJTs, MOSFETs

Course Goals

- Learn how to analyze and simulate linear and nonlinear circuits
 - Linear analysis \rightarrow Laplace transforms, Bode plots
 - Nonlinear analysis \rightarrow Linearize about a DC operating point to find AC small-signal response
 - Circuit simulation basics (MultiSim)
- Understand fundamental analog device properties
 - OpAmps, Diodes, BJTs, MOSFETs
- Learn amplifier properties and how to analyze/build multi-stage amplifier circuits
 - "Build" component is emphasized in lab and project

Administrative

- Instructor:
 - Sam Palermo
 - 315E WEB, 845-4114, spalermo@tamu.edu
 - Office hours: M 2:30PM-4:00PM & W 2:00PM-3:30PM
- Lectures
 - TR 2:20PM-3:35PM
- Class web page
 - <u>https://people.engr.tamu.edu/spalermo/ecen325.html</u>
 - Will use Canvas for turning in assignments
- Prerequisite
 - ECEN 314 (co-registration)

Class Material

- Textbook: *Fundamentals of Microelectronics, 3rd Edition*, B. Razavi, Wiley, 2021.
- References
 - *Class Notes*, J. Silva-Martinez
 - Class Notes, A. Karsilayan
 - Material is posted on website
- Lectures
 - ~25% slides, with previous semester's notes posted on website
 - ~75% delivered on whiteboard equivalent

Lab

Lab starts on 1/22 – 1/26 with an orientation session

Prelab 1 due in lab the week of 1/29 - 2/2

Grading

- Exams (75%)
 - Three midterm exams (25% each)
- Homework (10%)
 - Collaboration is allowed, but independent simulations and write-ups
 - Need to install MultiSim on your laptop/computer or access via VOAL
 - Turn in via Canvas
 - No late homework will be graded
- Laboratory (15%)

Preliminary Schedule

	Торіс	Week
I.	Introduction to electronics	Week 1-4
II.	Circuit analysis and bode plots	
III.	Operational amplifiers and circuit analysis	
	Review session (30 min.)	Feb. 27
	1 st MIDTERM	Feb. 29
IV.	Diode and bipolar device models	
V.	Concepts on input and output impedances and	Week 5-8
	transmission gain	
VI.	Basic and multi-stage amplifiers	
	Review session (30 min.)	Apr. 2
	2 nd MIDTERM	Apr. 4
VII.	Field-effect (MOS) transistors	Week 9-12
VIII.	Basic and multi-stage amplifiers	
IX.	Differential amplifiers	
	Review session (30 min.)	Apr. 25
	3 rd MIDTERM (1PM-3PM)	May 7

Dates may change with reasonable notice

Reading & Homework

- Chapter 1 (Razavi)
- Fundamentals of Circuit Analysis (Dr. Silva)
- HW 1 is posted on the website and due Feb 1