ECEN 325 Lab 8: BJT Amplifier Configurations

Objectives

The purpose of the lab is to examine the properties of the BJT amplifier configurations and investigate their smallsignal performance, with the emphasis on the design of BJT amplifiers.

Introduction

Superposition Theorem - Linear and Nonlinear Circuit Solution

The superposition theorem states that in a linear circuit with multiple sources, any branch current or node voltage is the sum of the currents or voltages produced by each source applied individually. Linear components include resistors, capacitors, inductors, and controlled sources, therefore any combination of these elements yield a linear circuit. Figure 1 shows the application of superposition theorem to solve linear circuits, where the DC and AC solutions are obtained by applying only DC and AC sources, respectively, providing the total solution as $V_{o}=$ $V_{o, d c}+V_{o, a c}$.

Figure 1: Application of the superposition theorem to linear circuits

The superposition theorem can be extended to solve nonlinear circuits under certain restrictions, which are known as small-signal conditions. The DC solution usually requires using simplified DC models for the nonlinear devices (such as using the constant-voltage-drop model for a diode or a base-emitter junction, instead of the exponential model), and can be obtained by applying only DC sources. AC small-signal model parameters are dependent on the DC solution, as well as other device parameters. Once the linearized circuit using AC small-signal models is constructed, AC solution can be obtained by applying only AC sources. Figure 2 illustrates extension of the superposition theorem to nonlinear circuits, where the approximate solution is $V_{o} \approx V_{o, d c}+V_{o, a c}$.

Figure 2: Extension of the superposition theorem to nonlinear circuits

BJT Small-Signal AC models

BJTs are nonlinear devices, where the collector current is an exponential function of the base-emitter voltage. Typical BJT amplifiers include DC sources providing the DC bias, as well as AC sources as the signals to be amplified. Extension of superposition to BJT amplifiers requires finding the DC solution first, where the BJTs must be biased in the active region. Figure 3 shows the AC small-signal models for NPN and PNP BJTs in the active region.

[^0]
π model

Figure 3: Small-signal AC models for NPN and PNP BJTs

Small-signal parameters in Fig. 3 can be calculated as

$$
\begin{equation*}
g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{\beta}{g_{m}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad \alpha=\frac{\beta}{\beta+1} \quad r_{o}=\frac{V_{A}}{I_{C}} \tag{1}
\end{equation*}
$$

where I_{C} and I_{E} are DC collector and emitter currents, respectively, V_{T} is the thermal voltage (approximately 25 mV at room temperature), β is the current gain of the transistor (around 100 or larger), and V_{A} is the Early Voltage (around 100V). For typical discrete BJT circuit implementations, r_{0} will not have a significant impact, therefore will be ignored. For small-signal AC analysis, π-model and T-model provide identical results, however the T-model allows more intuitive analysis with simpler calculations. Table 1 shows node impedances and node-to-node gains for generic BJT configurations, which are derived by substituting the transistor with its T-model, where $r_{0}=\infty$.

Table 1: BJT Node Impedances and Node-to-Node Gains when $r_{0}=\infty$

NPN	PNP	Impedance	NPN	PNP	Gain
		$Z_{\text {base }}=(\beta+1)\left(r_{e}+Z_{E}\right)$			$\frac{v_{c}}{v_{b}}=\frac{-\alpha Z_{C}}{r_{e}+Z_{E}}$
		$Z_{\text {emitter }}=r_{e}+\frac{Z_{B}}{\beta+1}$			$\frac{v_{c}}{v_{e}}=\frac{\alpha Z_{C}}{Z_{\text {emitter }}}$
		$Z_{\text {collector }}=\infty$			$\frac{v_{e}}{v_{b}}=\frac{Z_{E}}{r_{e}+Z_{E}}$

BJT Amplifier Configurations

Common-Emitter Configuration

Figures 4 and 5 show the common-emitter configurations for NPN and PNP BJTs, respectively. Analysis of this configuration yields

$$
\begin{array}{ll}
\mathrm{DC}: & V_{R B 2} \approx \frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{C C} \quad V_{R E}=V_{R B 2}-0.7 \quad I_{E}=\frac{V_{R E}}{R_{E}} \approx I_{C} \\
\mathrm{AC}: & A_{v}=\frac{V_{o, a c}}{V_{i}} \approx-\frac{R_{C}}{r_{e}+\left(R_{E} \| R_{G}\right)} \quad R_{i}=R_{B 1}\left\|R_{B 2}\right\|(\beta+1)\left(r_{e}+\left(R_{E} \| R_{G}\right)\right) \quad R_{o}=R_{C} \tag{3}
\end{array}
$$

(a)

(b)

(c)

Figure 4: (a) NPN Common-Emitter Configuration (b) DC equivalent (c) AC equivalent

Figure 5: (a) PNP Common-Emitter Configuration (b) DC equivalent (c) AC equivalent

Typical design specifications for the common-emitter configuration includes:

- 0-to-peak unclipped output voltage swing: \hat{V}_{o}
- Voltage gain: $A_{v}=\frac{V_{o, a c}}{V_{i}}$
- Input and output resistances: R_{i} and R_{o}
- THD at the maximum output level
- Sensitivity to β and $\left|V_{B E}\right|$ variations

Based on the typical specifications, design procedure for the common-emitter amplifier in Figs. 4 and 5 can be given as follows:
\triangle Choose $V_{R E} \geq 1 V$ to have less than 10% variation of I_{C} when $V_{B E}=0.7 \pm 0.1$.
\Rightarrow To have an unclipped output swing of $\hat{V}_{o}, V_{R C}$ should be chosen such that $\left(V_{C C}-\hat{V}_{o}-V_{R E}-0.2\right) \geq V_{R C} \geq \hat{V}_{o}$. Choice of $V_{R C}$ does not only affect the available signal swing at the output, but also determines the available gain as well as the linearity of the amplifier as follows:

$$
\begin{aligned}
& \text { is } R_{G}=0 \Rightarrow\left|A_{V}\right|=\frac{R_{C}}{r_{e}}=\frac{V_{R C} / I_{C}}{V_{T} / I_{C}}=\frac{V_{R C}}{V_{T}} \Rightarrow\left|A_{v}\right|_{\max }=\frac{V_{R C, \max }}{V_{T}}=\frac{V_{C C}-\hat{V}_{o}-V_{R E}-0.2}{V_{T}} \\
& \text { is Small-signal condition: } \hat{V}_{b e}=\frac{\hat{V}_{o}}{V_{R C}} V_{T} \ll V_{T} \Rightarrow \hat{V}_{o} \ll V_{R C}
\end{aligned}
$$

To maximize the available gain and linearity, choose $V_{R C}=V_{R C, \max }=V_{C C}-\hat{V}_{o}-V_{R E}-0.2$
Note that $V_{C E, \text { sat }} \approx 0.2 \mathrm{~V}$ is an approximation, you may increase it up to 0.5 V to avoid clipping in case operating point shifts due to resistor tolerances.
\Rightarrow Choose I_{C} such that

$$
I_{C} \leq \frac{\beta}{R_{i}} \frac{N}{\frac{N}{V_{R E}+0.7}+\frac{N}{V_{C C}-V_{R E}-0.7}+\frac{\left|A_{v}\right|}{V_{R C}}}
$$

where R_{i} is the minimum input resistance specified, and $N \approx \frac{I_{R B 1}}{I_{B}} \geq 10$ for β-insensitive design.
Note that as long as $V_{R C}$ and $V_{R E}$ are kept the same, choice of I_{C} does not change the output swing or the available gain, but affects the input and output resistances, as well as the resistor values in the amplifier.
\square Find the resistor values

$$
R_{C}=\frac{V_{R C}}{I_{C}} \quad R_{E}=\frac{V_{R E}}{I_{C}} \quad R_{G} \approx \frac{R_{C}}{\left|A_{v}\right|}-r_{e} \quad R_{B 1}=\frac{\beta\left(V_{C C}-V_{R E}-0.7\right)}{N I_{C}} \quad R_{B 2}=\frac{\beta\left(V_{R E}+0.7\right)}{N I_{C}}
$$

\leadsto Simulate the circuit for the final adjustment of R_{G}.

Common-Collector Configuration

Figures 6 and 7 show the common-collector configurations for NPN and PNP BJTs, respectively. Also known as the emitter-follower, analysis of this configuration yields
$\mathrm{DC}: \quad V_{R B 2} \approx \frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{C C}$

$$
V_{R E}=V_{R B 2}-0.7 \quad I_{E}=\frac{V_{R E}}{R_{E}} \approx I_{C}
$$

$\mathrm{AC}: \quad A_{v}=\frac{V_{o, a c}}{V_{i}}=\frac{R_{E}}{r_{e}+R_{E}} \quad R_{i}=R_{B 1}\left\|R_{B 2}\right\|(\beta+1)\left(r_{e}+R_{E}\right) \quad R_{o}=R_{E} \| r_{e}$

(a)

(b)

(c)

Figure 6: (a) NPN Common-Collector (Emitter-Follower) Configuration (b) DC equivalent (c) AC equivalent

Figure 7: (a) PNP Common-Collector (Emitter-Follower) Configuration (b) DC equivalent (c) AC equivalent
In typical multi-stage amplifiers, emitter follower is directly connected to a gain stage, such as a common-emitter amplifier, without the extra biasing resistors $R_{B 1}$ and $R_{B 2}$. Therefore, DC voltage levels in an emitter follower is typically dependent on the previous amplifier stage.

Common-Base Configuration

Figures 8 and 9 show the common-base configurations for NPN and PNP BJTs, respectively. Analysis of this configuration yields

$$
\begin{array}{ll}
\mathrm{DC}: & V_{R B 2} \approx \frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{C C} \\
\mathrm{AC}: & A_{v}=\frac{V_{o, a c}}{V_{i}}=\frac{R_{C}}{r_{e}} \tag{7}
\end{array} R_{i}=R_{E} \| r_{e} \quad R_{R B 2}-0.7 \quad I_{E}=\frac{V_{R E}}{R_{E}} \approx I_{C}
$$

(a)

(b)

(c)

Figure 8: (a) NPN Common-Base Configuration (b) DC equivalent (c) AC equivalent

Figure 9: (a) PNP Common-Base Configuration (b) DC equivalent (c) AC equivalent

Common-base stages are typically used in cascode or folded-cascode amplifiers, where a common-base stage is directly following a common-emitter amplifier.

Calculations

1. Design the common-emitter amplifier in Fig. 4(a) with the following specifications:

Supply Voltage, $V_{C C}$	5 V
0-to-Peak Output Swing, \hat{V}_{o}	$\geq 1 \mathrm{~V}$
Voltage Gain, $\left\|A_{v}\right\|$	25
Input Resistance, R_{i}	$\geq 2 \mathrm{k} \Omega$
Output Resistance, R_{o}	$\leq 1.8 \mathrm{k} \Omega$
THD for 5kHz 1V (0-to-peak) Sine Wave Output Voltage, V_{o}	$\leq 4 \%$
Relative Variation of I_{C} for $V_{B E}=0.7 \pm 0.1 \mathrm{~V}$	$\leq 10 \%$
Transistor's Current Gain, β	≥ 100

Show your design procedure and all your calculations. Your design should be insensitive to β variations.
2. Using the same $R_{B 1}, R_{B 2}$ and R_{E} values from your common-emitter amplifier, calculate A_{v}, R_{i} and R_{o} for the emitter follower in Fig. 6.
3. Using the same $R_{B 1}, R_{B 2}, R_{C}$ and R_{E} values from your common-emitter amplifier, calculate A_{v}, R_{i} and R_{o} for the common-base amplifier in Fig. 8.

Simulations

For all simulations, provide screenshots showing the schematics and the plots with the simulated values properly labeled.

1. Draw the common-emitter amplifier schematics in Figs. 4(a) and 5(a) using the calculated component values and 2N3904 and 2N3906 transistors. For both circuits,
(a) Perform DC operating point or interactive simulation to obtain the DC solution for $V_{R B 2}, V_{R E}, V_{R C}$, $V_{o, d c}$ and I_{C}.
(b) Perform AC simulation to obtain A_{v}, R_{i} and R_{0}.
(c) Apply a 5 kHz 40 mV sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using transient simulation. Perform Fourier simulation to measure the total harmonic distortion (THD) on the output waveform.
(d) Increase the input amplitude to measure the clipping levels at the output voltage V_{o}.
2. Draw the emitter-follower schematics in Figs. 6(a) and 7(a) using the calculated component values and 2N3904 and 2N3906 transistors. For both circuits,
(a) Perform DC operating point or interactive simulation to obtain the DC solution for $V_{R B 2}, V_{R E}$ and I_{C}.
(b) Perform AC simulation to obtain A_{v}, R_{i} and R_{o}.
(c) Apply a 5 kHz 0.8 V sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using transient simulation. Perform Fourier simulation to measure the total harmonic distortion (THD) on the output waveform.
3. Draw the common-base amplifier schematics in Figs. 8(a) and 9(a) using the calculated component values and 2N3904 and 2N3906 transistors. For both circuits,
(a) Perform DC operating point or interactive simulation to obtain the DC solution for $V_{R B 2}, V_{R E}, V_{R C}$, $V_{o, d c}$ and I_{C}.
(b) Perform AC simulation to obtain A_{v}, R_{i} and R_{o}.
(c) Apply a 5 kHz 8 mV sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using transient simulation. Perform Fourier simulation to measure the total harmonic distortion (THD) on the output waveform.

Measurements

For all measurements, provide screenshots showing the plots with the measured values properly labeled.

1. Build the common-emitter amplifiers in Figs. 4(a) and 5(a) using the simulated component values and 2N3904 and 2N3906 transistors. For both circuits,
(a) Measure the DC values for $V_{R B 2}, V_{R E}, V_{R C}, V_{o, d c}$ and I_{C} using the voltmeter or scope.
(b) Measure A_{v}, R_{i} and R_{o} using the network analyzer.
(c) Apply a 5 kHz 40 mV sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using the scope. Measure the total harmonic distortion (THD) on the output waveform using the spectrum analyzer.
(d) Increase the input amplitude to measure the clipping levels at the output voltage V_{o} using the scope.
2. Build the emitter-follower circuit in Fig. 6(a) using the simulated component values and 2 N 3904 transistor.
(a) Measure the DC values for $V_{R B 2}, V_{R E}$ and I_{C} using the voltmeter or scope.
(b) Measure A_{v}, R_{i} and R_{o} using the network analyzer.
(c) Apply a 5 kHz 0.8 V sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using the scope. Measure the total harmonic distortion (THD) on the output waveform using the spectrum analyzer.
3. Build the common-base amplifier in Fig. 8(a) using the simulated component values and 2N3904 transistor.
(a) Measure the DC values for $V_{R B 2}, V_{R E}, V_{R C}, V_{o, d c}$ and I_{C} using the voltmeter or scope.
(b) Measure A_{v}, R_{i} and R_{o} using the network analyzer.
(c) Apply a 5 kHz 8 mV sine wave signal to the input V_{i} and obtain the time-domain waveforms for the input and output voltages using the scope. Measure the total harmonic distortion (THD) on the output waveform using the spectrum analyzer.

Report

1. Include all measurement plots.
2. Prepare a table showing calculated, simulated and measured results.
3. Compare the results and comment on the differences.

Demonstration

1. Calculations and simulations must be submitted on Canvas as a single pdf file before the lab session. All simulation plots must include a timestamp.
2. Your name and UIN must be written on the side of your breadboard.
3. For the common-emitter amplifiers in Figs. 4(a) and 5(a):

- Measure A_{v}, R_{i}, and R_{o} using the network analyzer.
- Apply a 5 kHz 40 mV sine wave input and show the time-domain output voltage using the scope.
- With the 5 kHz 40 mV sine wave input, measure the THD at the output using the spectrum analyzer.

4. Convert Fig. 4(a) to Fig. 6(a) by short-circuiting R_{C} with a wire and removing the bypass capacitor at the emitter, then

- Apply a 5 kHz 0.8 V sine wave input and show the time-domain waveforms at the input and the output using the scope.

5. Remove the wire short-circuiting R_{C}, add the bypass capacitor back to the emitter, remove R_{G}, and AC-ground the base through the capacitor to obtain the common-base amplifier in Fig. 8(a), then

- Apply a 5 kHz 8 mV sine wave input and show the time-domain waveforms at the input and the output using the scope.

[^0]: © Department of Electrical and Computer Engineering, Texas A\&M University

