Lab 4 Review

Julian Gomez
Texas A&M University

Connecting the IC

Summing Amplifier Circuit

Using superposition...

$$V_o = -\frac{R_3}{R_1} V_{i1}$$

Summing Amplifier Circuit

Similarly...

Now, due to the superposition theorem we can add the two inputs independently

$$V_o = -\frac{R_3}{R_1}V_{i1} + \left(-\frac{R_3}{R_2}V_{i2}\right) = -\left(\frac{R_3}{R_1}V_{i1} + \frac{R_3}{R_2}V_{12}\right)$$

For the summing amplifier in Fig. 1, find R1 and R2 to have Vo = -(Vi1 + 2Vi2), if R3 = $15k\Omega$

R1 = 15 k
$$\Omega$$

R2 = 7.5 k Ω

Differential Amplifier Circuit

Using superposition...

Differential Amplifier Circuit

Similarly... R_{1} $V_{i2} \stackrel{+}{=} R_{3}$ R_{4} R_{2} V_{i} R_{2} V_{i} R_{3} R_{4} R_{4}

$$V_o = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) V_{i2}$$

Now, due to the superposition theorem we can add the two inputs independently

$$V_o = -\frac{R_2}{R_1}V_{i1} + \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1}\right)V_{i2} \qquad \text{or} \qquad V_o = -\frac{R_2}{R_1}V_{i1} + \frac{\frac{R_4}{R_3}}{1 + \frac{R_4}{R_3}} \left(1 + \frac{R_2}{R_1}\right)V_{i2}$$

If R2/R1 = R4/R3...
$$V_o = -\frac{R_2}{R_1}V_{i1} + \frac{\frac{R_2}{R_1}}{1 + \frac{R_2}{R_1}} \left(1 + \frac{R_2}{R_1}\right)V_{i2}$$
 $V_o = \frac{R_2}{R_1}(V_{i2} - V_{i1})$

For the differential amplifier in Fig. 2, find R1 to have Vo = Vi2 – Vi1, if R2 = R3 = R4 = $10k\Omega$.

$$R1 = 10 \text{ k}\Omega$$

Instrumentation Amplifier

- The instrumentation amplifier offers the following advantages:
 - Very high input impedance
 - High common-mode rejection ratio
 - Low offset
 - Low noise

Instrumentation Amplifier

The input stages operate as non-inverting amplifiers where the gain is defined

The third op-amp is working as the differential amplifier that we just analyzed.

$$V_{o1,2} = \left(1 + \frac{R}{\frac{R_{gain}}{2}}\right) V_{i1,2}$$

$$V_{o2} - V_{o1} = \left(1 + \frac{2R}{R_{gain}}\right)(V_{i2} - V_{i1})$$

