## Lab 4 Review



Julian Gomez
Texas A\&M University

## Connecting the IC



## Summing Amplifier Circuit



Using superposition...


## Summing Amplifier Circuit

Similarly...


$$
V_{o}=-\frac{R_{3}}{R_{2}} V_{i 2}
$$

Now, due to the superposition theorem we can add the two inputs independently

$$
V_{o}=-\frac{R_{3}}{R_{1}} V_{i 1}+\left(-\frac{R_{3}}{R_{2}} V_{i 2}\right)=-\left(\frac{R_{3}}{R_{1}} V_{i 1}+\frac{R_{3}}{R_{2}} V_{12}\right)
$$

For the summing amplifier in Fig. 1, find R1 and R2 to have $\mathrm{Vo}=-(\mathrm{Vi1}+2 \mathrm{Vi} 2)$, if $R 3=15 k \Omega$

$$
\begin{aligned}
& \mathrm{R} 1=15 \mathrm{k} \Omega \\
& \mathrm{R} 2=7.5 \mathrm{k} \Omega
\end{aligned}
$$

## Differential Amplifier Circuit



Using superposition...


$$
V_{o}=-\frac{R_{2}}{R_{1}} V_{i 1}
$$

## Differential Amplifier Circuit

Similarly...


$$
V_{o}=\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{i 2}
$$

Now, due to the superposition theorem we can add the two inputs independently
$V_{o}=-\frac{R_{2}}{R_{1}} V_{i 1}+\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{i 2} \quad$ or $\quad V_{o}=-\frac{R_{2}}{R_{1}} V_{i 1}+\frac{\frac{R_{4}}{R_{3}}}{1+\frac{R_{4}}{R_{3}}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{i 2}$
If $\mathrm{R} 2 / \mathrm{R} 1=\mathrm{R} 4 / \mathrm{R} 3 \ldots \quad V_{o}=-\frac{R_{2}}{R_{1}} V_{i 1}+\frac{\frac{R_{2}}{R_{1}}}{1+\frac{R_{2}}{R_{1}}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{i 2} \quad V_{o}=\frac{R_{2}}{R_{1}}\left(V_{i 2}-V_{i 1}\right)$
For the differential amplifier in Fig. 2, find R1 to have Vo = Vi2 - Vi1, if R2 = R3 = $R 4=10 \mathrm{k} \Omega$.

$$
\mathrm{R} 1=10 \mathrm{k} \Omega
$$

## Instrumentation Amplifier



- The instrumentation amplifier offers the following advantages:
- Very high input impedance
- High common-mode rejection ratio
- Low offset
- Low noise


## Instrumentation Amplifier

The input stages operate as non-inverting amplifiers where the gain is defined by Rgain.


$$
\begin{gathered}
V_{o 1,2}=\left(1+\frac{R}{\frac{R_{\text {gain }}}{2}}\right) V_{i 1,2} \\
V_{o 2}-V_{o 1}=\left(1+\frac{2 R}{R_{\text {gain }}}\right)\left(V_{i 2}-V_{i 1}\right)
\end{gathered}
$$

$\mathrm{Vo}=\mathrm{Vi} 2-\mathrm{Vi} 1$


