ECEN 325 Lab 10: Characterization of the MOSFET

Objectives

The purpose of this lab is to characterize N and P type metal-oxide-semiconductor field-effect transistors (MOS-FETs), also known as NMOS and PMOS transistors.

Introduction

Figure 1 shows typical symbols for the NMOS and PMOS transistors. Depending on the applied DC bias, MOSFETs have three regions of operation:

• Cutoff Region:

NMOS: $V_{GS} < V_{tn} \Rightarrow I_D = 0$ **PMOS:** $V_{SG} < V_{tp} \Rightarrow I_D = 0$

• Triode (Linear) Region:

$$\mathbf{NMOS:} \ V_{DS} < V_{ov} \ \Rightarrow \ I_D = k'_n \frac{W}{L} \left(V_{ov} V_{DS} - \frac{V_{DS}^2}{2} \right) \ , \ V_{ov} = V_{GS} - V_{tn}$$
$$\mathbf{PMOS:} \ V_{SD} < V_{ov} \ \Rightarrow \ I_D = k'_p \frac{W}{L} \left(V_{ov} V_{SD} - \frac{V_{SD}^2}{2} \right) \ , \ V_{ov} = V_{SG} - |V_{tp}|$$

• Active (Saturation) Region:

NMOS:
$$V_{DS} > V_{ov} \Rightarrow I_D = \frac{k'_n}{2} \frac{W}{L} V_{ov}^2$$
, $V_{ov} = V_{GS} - V_{tn}$
PMOS: $V_{SD} > V_{ov} \Rightarrow I_D = \frac{k'_p}{2} \frac{W}{L} V_{ov}^2$, $V_{ov} = V_{SG} - |V_{tp}|$

Figure 1: Circuit symbols for (a) NMOS Transistor (b) PMOS Transistor

MOSFET Characterization

Figure 2 shows a characterization circuit for an NMOS transistor. To obtain I_D as a function of V_{GS} , V_1 is swept while V_2 is kept constant. If V_1 is kept constant and V_2 is swept, I_D can be obtained as a function of V_{DS} .

Figure 2: NMOS transistor characterization circuit

[©] Department of Electrical and Computer Engineering, Texas A&M University

Characterization circuit for a PMOS transistor is shown in Fig. 3. Keeping V_2 constant and sweeping V_1 provides I_D as a function of V_{SG} . Sweeping V_2 while V_1 is kept constant provides the I_D vs. V_{SD} characteristics.

Figure 3: PMOS transistor characterization circuit

Figure 4(a) shows the drain current (I_D) of an NMOS transistor as a function of V_{GS} . Transistor parameters such as the threshold voltage (V_t) and the transconductance parameter (k'W/L or β) can be obtained by taking the derivative of I_D with respect to V_{GS} , as depicted in Fig. 4(b). In this plot, k'W/L (or β) is the slope of the line, whereas V_t is the intersection with the V_{GS} axis.

Figure 4: NMOS characterization (a) I_D vs. V_{GS} (b) $\frac{dI_D}{dV_{GS}}$ vs. V_{GS}

Simulations

For all simulations, provide screenshots showing the schematics and the plots with the simulated values properly labeled.

As the first step, install MOS transistor library (UsrComp_S_ECEN.usr) to your circuit simulator, details are provided in the MultiSim manual.

- 1. Draw the schematics for the NMOS characterization circuit in Fig. 2 using the 2N7000G transistor.
 - (a) Perform a DC sweep of V_1 from 0V to 2.5V while $V_2 = 5V$, and plot I_D and its derivative as a function of V_{GS} .

(b) Find the threshold voltage V_t and the transconductance parameter $k' \frac{W}{I}$ (or β).

- 2. Repeat (1) for the CD4007N transistor.
- 3. Draw the schematics for the PMOS characterization circuit in Fig. 3 using the CD4007P transistor.
 - (a) Perform a DC sweep of V_1 from -2.5V to 0V while $V_2 = -5V$, and plot I_D and its derivative as a function of V_{SG} .

(b) Find the threshold voltage V_t and the transconductance parameter $k' \frac{W}{L}$ (or β).

Measurements

For all measurements, provide screenshots showing the plots with the measured values properly labeled.

- 1. Build the NMOS characterization circuit in Fig. 2 using the 2N7000G transistor.
 - (a) Apply a ramp signal from 0V to 2.5V at 1Hz for V_1 while $V_2 = 5V$. Export the voltage measurements from the scope to Excel, and plot I_D as a function of V_{GS} .
 - (b) Plot the derivative of I_D as a function of V_{GS} and find V_t and $k' \frac{W}{L}$ as depicted in Fig. 4(b). In Excel, dI_D/dV_{GS} can be calculated as shown with the column **ID'** in Fig. 5, starting with the formula (B3-B2)/(A3-A2). However, due to noise in the measured data, taking the derivative without filtering can result in the **ID'** plot shown in Fig. 6(a). Using decimation provides filtering and reduces the noise in ID'. The column **ID'** (decimated) in Fig. 5 shows the starting formula (to be copied to all cells below), and the resulting plot is shown in Fig. 6(b). In this plot, a decimation factor of 300 is used. The corresponding V_{GS} should also be shifted as shown with the **VGS (adjusted)** column in Fig. 5.

	Α	В	С	D	E
1	VGS	ID	ID'	VGS (adjusted)	ID' (decimated)
2	A2	B2	(B3-B2)/(A3-A2)	A152	(B302-B2)/(A302-A2)
3	A3	B 3	(B4-B3)/(A4-A3)	A153	(B303-B3)/(A303-A3)

Figure 5: Implementation of derivation and decimation in Excel

2. Repeat **(1)** for the CD4007N transistor. See Fig. 7 for the internal schematics of CD4007 chip, connect pin 7 to GND and pin 14 to +5V supply voltage.

Figure 7: Schematic diagram of CD4007 chip

- **3.** Build the PMOS characterization circuit in Fig. 3 using the CD4007P transistor, connect pin 7 to -5V supply voltage and pin 14 to GND.
 - (a) Apply a ramp signal from -2.5V to 0V at 1Hz for V_1 while $V_2 = -5V$. Export the voltage measurements from the **scope** to Excel, and plot I_D as a function of V_{SG} .
 - **(b)** Plot the derivative of I_D as a function of V_{SG} , and find V_t and $k' \frac{W}{L}$ as described in **1(b)**.

Report

- 1. Include all measurement plots.
- 2. Prepare a table showing simulated and measured results.
- 3. Compare the results and comment on the differences.

Demonstration

- **1.** Simulations must be submitted on Canvas as a single pdf file **before** the lab session. All simulation plots must include a timestamp.
- 2. Your name and UIN must be written on the side of your breadboard.
- **3.** Using the characterization circuits, obtain V_t and $k' \frac{W}{L}$ for 2N7000G, CD4007N and CD4007P transistors as described.