ECEN 325

Homework \#5

Due: April 2, 2024, 11:59PM
Homeworks will not be received after due.
Instructor: Sam Palermo

1. (25 points - 15pts calc., 10pts Multisim) BJT DC Operating Points and AC small signal parameters.
a) For the BJT circuit below, calculate the DC values for $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}$, and I_{E}. Compute the AC small signal parameters $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\pi}, \mathrm{r}_{\mathrm{e}}$. Assume the transistor $\beta=150, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{th}}=25.9 \mathrm{mV}$.
b) Verify the DC operating points in Multisim.

2. ($\mathbf{2 5}$ points - 15pts calc., 10pts Multisim) Common Emitter Amplifier.
a) For the common emitter amplifier below, calculate the small signal gain $A_{v}=v_{0} / v_{i}$ (from the transistor base to the output node), the input resistance $\mathrm{R}_{\text {in }}$, the output resistance $\mathrm{R}_{\text {out }}$, and the overall voltage gain $\mathrm{G}_{\mathrm{v}}=\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{s}}$ (from the voltage source to the output node). Assume that the capacitors act as AC shorts and that the transistor's r_{o} is infinite (can be neglected). Note, you can use the small signal parameters that you solved for in Problem 1.
b) Simulate in Multisim. Plot the magnitude in $d B$ (or $d b \Omega$) of $A_{v}, G_{v}, R_{i n}$, and $R_{\text {out }}$ versus frequency from 10 Hz to 10 MHz .

3. ($\mathbf{2 5}$ points $\mathbf{- 1 5 p t s}$ calc., 10pts Multisim) Common Collector Amplifier.

Repeat parts a) and b) from Problem 2 for the common collector amplifier.

4. (25 points - 15pts calc., 10pts Multisim) Common Base Amplifier.

Repeat parts a) and b) from Problem 2 for the common base amplifier.

