ECEN 325

Homework #4

Due: March 21, 2024, 11:59PM Homeworks will not be received after due. Instructor: Sam Palermo

1. (20 points) For the 2 following circuits solve for the labeled current I and voltage V. Use the constant-voltage-drop diode model ($V_D=0.7V$).

2. (20 points) In the following circuit, the op-amp is ideal except that the op-amp output saturates at $\pm 6V$. Sketch the circuit's transfer characteristic, $v_o vs v_i$, for v_i ranging from $\pm 10V$. Use the constant-voltage-drop diode model ($V_D=0.7V$).

3. (20 points) For the circuit below:

- a) Find the DC diode current (I_D) and the DC output voltage (V_O) .
- b) Find the small-signal AC transfer function $v_o(s)/v_i(s)$. Assume n=1 for the diode.
- c) Find the total output voltage $v_{0,total}$ for $v_i(t)=0.001\sin(2\pi * 10^5 t)$.

4. **(40 points)** Design an AC adapter with the following specifications using a single-ended transformer. Choose an appropriate rectifier to minimize the capacitance.

Input voltage:	120V _{rms} , 60Hz
Output voltage:	5V
Maximum ripple:	5%
Load current range:	0-500mA

Determine the minimum specs for the diode (I_P, reverse breakdown voltage), primary/secondary ratio (N_P/N_S) of the transformer, and the load resistor and capacitor value.

Recall for a sinusoidal signal: $V_{rms} = \frac{V_P}{\sqrt{2}}$ Also, for a transformer

