Texas A&M University
Department of Electrical and Computer Engineering

ECEN 325 – Electronics

Fall 2022

Exam #3

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 6 pages in your exam
- Good Luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Name: Sam Palermo

UIN:
Problem 1 (30 points)
For all the circuits below, use the following NMOS parameters
\[K_{PM} = \mu n C_{ox} = 100 \mu A/V^2, \quad V_{TN} = 1V, \quad \lambda_n = 0V^{-1} \]
and the following PMOS parameters
\[K_{P} = \mu p C_{ox} = 30 \mu A/V^2, \quad V_{TP} = -1V, \quad \lambda_p = 0V^{-1} \]

For the following two circuits calculate
i. \(I_D \) with \(W_1/L_1 = 10/1 \) (10 points)
ii. The maximum \(W_1/L_1 \) such that the M1 transistor remains in saturation (10 points)

a) \[\begin{align*}
I_D &= \frac{K_{PM}}{2} \left(\frac{W_1}{L_1} \right) \left(V_{GS1} - V_{TN} \right)^2 \\
&= \frac{100 \mu A}{2} \left(\frac{10}{1} \right) (6 - 1)^2 = 12.5 mA
\end{align*} \]
Check Sat: \(V_{GS1} \geq V_{GS1} - V_{TN} = 6V - 1V = 5V \)

b) \[\begin{align*}
I_D &= \frac{K_{PM}}{2} \left(\frac{W_1}{L_1} \right) \left(V_{GS1} - V_{TN} \right)^2
\end{align*} \]

Id (W/L=10/1) = 12.5 mA

M1 Sat. Max W/L = 12, 8
c) For the following circuit find the values for I_{D2}, I_{D3}, and V_{OUT}. Assume all transistors are operating in saturation. (10 points)

From current mirror:

$$I_{D2} = I_{D1} \frac{(V_{L2})}{(V_{L1})} = 2\text{mA} \left(\frac{10}{40}\right) = 500\mu\text{A}$$

$$I_{D3} = \frac{K_{PN}}{2}(\frac{V}{L})_{3}(V_{os2} - V_{TN})^{2} = \frac{1000}{2}(30)(2-1) = 1.5\text{mA}$$

$$I_{D2} = 500\mu\text{A}$$

$$I_{D3} = 1.5\text{mA}$$

$$V_{OUT} = V_{DD} - I_{R}R = 10\text{V} - 1\text{mA}(6\text{K}) = 4\text{V}$$
Problem 2 (35 points)
Assume for problem 2 that the NMOS transistors are all operating in saturation and have

\[K_{PN} = \mu_n C_{ox} = 100 \mu A/V^2, \quad V_{TN} = 1V, \quad \lambda_n = 0V^{-1} \]

a) Calculate the DC values for \(I_D, V_G, V_S \) and the DC small-signal \(g_{m1} \). (10 points)

\[I_D = 5mA \left(\frac{200}{50} \right) = 20mA \]
\[V_G = 10V \left(\frac{600K}{100K + 600K} \right) = 6V \]
\[V_S = V_G - \left(\frac{2TC_0}{K_{m1}^2} + V_{TN} \right) = 6V - \left(\frac{2C_0}{10\mu (1000)} + 1 \right) = 4.37V \]

\[I_D = 20mA \]
\[V_G = 6V \]
\[V_S = 4.37V \]
\[g_{m1} = 63.2 mA/V \]

b) Sketch the small-signal model of the circuit. Assume that the capacitors act as AC shorts and only draw the essential transistor(s). Only ONE version of the model (\(\pi \) or \(T \)) is required. (10 points)

\[\frac{\delta m_1}{1 + \delta m_1^2} = \frac{1}{2} \cdot \frac{K_{PN}}{I_D} \]

\[2I_D = 1 + (1000)(1000)(2)(20mA) \]
\[= 63.2 mA/V \]

\[\delta m_1 = 1 \]
\[I_D = 20mA \]
\[V_G = 6V \]
\[V_S = 4.37V \]
\[g_{m1} = 63.2 mA/V \]

\[V_{in} \]
\[I_{in} \]
\[R_{in} \]
\[V_{out} \]
\[R_{out} \]

\[A_v = \frac{g_{m1}R_L}{1 + g_{m1}R_L} = \frac{(63.2 mA)(100)}{1 + (63.2 mA)(100)} = 0.863 \]
\[R_{in} = R_L = 400K \parallel 600K = 240K \]
\[R_{out} = \frac{1}{g_{m1}} = \frac{1}{63.2 mA} = 15.9 \]

\[A_v = 0.863 \]
\[R_{in} = 240K \]
\[R_{out} = 15.9 \]
Problem 3 (35 points)
This problem involves the small signal analysis of the circuit below. Assume that the transistors are all operating in saturation and have $r_0=\infty$.

a) Sketch the circuit's small-signal model. Assume the capacitors act as AC shorts. (15 points)

b) Derive expressions for the small signal gain $A_v=v_o/v_i$, input resistance R_{in}, and output resistance R_{out}. (20 points)

\[V_o = \frac{V_o - 2V_i}{R_F} + g_mV_i - g_m2V_i = 0 \]
\[V_o \left(\frac{1}{R_F} \right) = V_i \left(\frac{1}{R_F} - g_m - g_m2 \right) \]
\[A_v = \frac{V_o}{V_i} = 1 - (g_m + g_m2)R_F \]
\[A_v = 1 - (g_m + g_m2)R_F \]
\[R_{in} = \frac{1}{g_m + g_m2} \]
\[R_{out} = R_F \]