Texas A\&M University Department of Electrical and Computer Engineering

EDEN 325 - Electronics

Fall 2022

Exam \#2

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are $\mathbf{6}$ pages in your exam
- Good Luck!

Problem	Score	Max Score
1		10
2		20
3		35
4		35
Total		$\mathbf{1 0 0}$

Name: SAM PALERMO
UN: \qquad

Problem 1 (10 points)
For all the circuits below, use the constant-voltage-drop diode model $\left(\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}\right), \mathrm{V}_{\mathrm{th}}=25.9 \mathrm{mV}$, and $\mathrm{n}=1$.
a) Find $V_{\text {Out }}, I_{D}$, and the small signal diode resistance, r_{d}.

Diode is on

$$
I_{D}=920 \mu \mathrm{~A}
$$

$$
r_{d}=\frac{V_{+h}}{I_{0}}=\frac{25.9 \mathrm{mV}}{920 \mu \mathrm{~A}}=28.2 \mathrm{~N}
$$

$$
\text { lout }=4.3 \mathrm{~V}
$$

$$
I_{D}=920 \mu A
$$

$$
\mathrm{r}_{\mathrm{d}}=28.21
$$

Problem 2 (20 points)
Assume for the following circuit that all diodes are forward biased. Also assume that the capacitors act as AC shorts.
a) Derive an expression for the small-signal gain $A_{v}=v_{0} / v_{i}$.
(10 points)
b) Calculate the value of I_{1} for $A_{v}=0.4 \quad$ (10 points)

AC Equivalent Circuit

$$
\begin{aligned}
\frac{r_{d 2}}{r_{d 1}+r_{d 2}} & =0.4 \\
r_{d 2} & =\frac{2}{3} r_{d 1} \Rightarrow I_{D 2}=\frac{3}{2} I_{n 1}
\end{aligned}
$$

$$
A_{v} \text { Expression }=\frac{r_{d_{2}}}{r_{d_{1}}+r_{d_{2}}}
$$

$$
\mathrm{I}_{1}\left(\mathrm{~A}_{\mathrm{V}}=0.4\right)=
$$

$$
\begin{aligned}
I_{01}+I_{02} & =2 \mathrm{~mA} \\
\frac{5}{2} I_{D 1} & =2 \mathrm{~mA} \\
I_{D 1} & =0.8 \mathrm{~mA}=I_{1}
\end{aligned}
$$

Problem 3 (35 points)
Assume for problem 2 that the transistor $\beta=150, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{th}}=25.9 \mathrm{mV}$.
a) Calculate the DC values for $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}$, and I_{E}. Compute the AC small signal parameters $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\pi}, \mathrm{r}_{\mathrm{c}}$. (18 points)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=11.2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{B}}=74,7 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{E}}=11.3 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V}
\end{aligned}
$$

$$
V_{B}=1.27 \mathrm{~V}
$$

$I_{B}=\frac{I_{E}}{\beta+1}=74.7 \mu \mathrm{~A}, \quad \begin{aligned} & I_{C}=\beta I_{B}=11.2 \mathrm{~mA}\end{aligned}$

$$
\mathrm{V}_{\mathrm{E}}=0.57 \mathrm{~V}
$$

$$
\begin{array}{ll}
V_{E}=I_{E} R_{E}=11.3 m A(50 n)=0.57 \mathrm{~V} \\
V_{R}=1 /
\end{array}=07=177 \mathrm{~V}=43 \mathrm{~mA} / \mathrm{V}
$$

$$
\mathrm{g}_{\mathrm{m}}=432^{\mathrm{m} \mathrm{~A} / \mathrm{V}}
$$

$$
V_{B}=V_{E}+0.7=1.27 \mathrm{~V}
$$

$$
V_{C}=10 \mathrm{~V}
$$

$$
\begin{aligned}
r_{\pi}=\frac{V_{+h}}{I_{2}}=\frac{25.9 \mu v}{74.7 \mu A} & =347 \Lambda \\
r_{e} & =\frac{V_{+h}}{I_{E}}=\frac{25.9 \mathrm{mV}}{1.3 \mathrm{~mA}}=2.292
\end{aligned}
$$

b) Sketch the small-signal model of the circuit. Assume that the capacitors act as AC shorts and that the transistor's r_{0} is infinite. Only ONE version of the model (π or T) is required (11 points)

c) Calculate the small signal gain $A_{v}=v_{0} / v_{\mathrm{i}}$, the input resistance $R_{\text {in }}$, the output resistance $R_{\text {out }}$. (6 points)

$$
R_{\text {our }}=R_{c}\left\|_{s}=2,2,\right\|_{50}=2,19 n
$$

$$
\begin{aligned}
& A_{V}=\frac{R_{E} \| R_{L}}{R_{C}+R_{E} \| R_{L}}=\frac{50 \| 50}{2.29+501150}=0.916 \mathrm{~V} / \mathrm{V} \\
& R_{\text {in }}=R_{B}\left\|\left[\cdots+(\beta+1)\left(R_{E} \| R_{L}\right)\right]=50 k\right\|[347+(151)(501150)] \\
& =3.81 \mathrm{k} \Omega \\
& A_{v}=0.9 / 6 \mathrm{v} / \mathrm{v} \\
& \mathrm{R}_{\mathrm{in}}=3.81 k へ \\
& R_{\text {out }}=2.19 \Omega
\end{aligned}
$$

4
Problem 135 points)
Assume for problem 3 that the transistors are operating in active mode and that the capacitors act as AC shorts and that the transistor's r_{0} is infinite (can be neglected).
a) For the amplifier below derive an expression for the small signal gain $\mathrm{A}_{\mathrm{v}}=\mathrm{v}_{0} / \mathrm{v}_{\mathrm{i}}$ as a function of $\boldsymbol{\beta}$. (6 points)

$$
A_{v}=-g_{n} R_{c}=-\frac{I_{c}}{U_{+h}} R_{c}=-\frac{\beta I_{B}}{V_{+h}} R_{c}
$$

$A_{v}(\beta)$ Expression: $-\frac{\beta I_{B}}{V_{+h}} R_{C}$
b) Now assume that $I_{B}=10 \mu A, R_{C}=270 \Omega$, and $V_{t h}=25.9 \mathrm{mV}$. Calculate A_{v} for a β of 150 and 300 . (4 points)

$$
\begin{aligned}
& A_{V}=-\frac{150(1 / \mu \mathrm{A})}{25.9 \mathrm{mV}}(270 \mathrm{I})=-15.6 \mathrm{~V} / \mathrm{V} \\
& A_{V 2}=-\frac{300(10 \mu \mathrm{~A})}{25.9 \mathrm{mV}}(270 \mathrm{I})=-31.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& A_{v}\left(\beta_{1}=150\right)=-15.6 \mathrm{~V} / \mathrm{V} \\
& A_{v}\left(\beta_{2}=300\right)=-31.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

c) For the amplifier below derive an expression for the small signal gain $A_{v}=v_{0} / v_{i}$ as a function of $\boldsymbol{\beta}$. (10 points)

$$
A_{V}=\frac{-g_{m} R_{c}}{1+\frac{9 m R_{E}}{\alpha}}=\frac{-\frac{\beta I_{B}}{V_{+h}} R_{c}}{1+\frac{\beta I_{B}}{V_{+h}}\left(\frac{R+1}{R}\right) R_{E}}
$$

$\mathrm{A}_{\mathrm{v}}(\beta)$ Expression :

$$
\frac{-\frac{\beta I_{B}}{V+h} R_{C}}{1+\frac{I_{B}(\beta+1)}{V+h} R_{E}}=\frac{-\left(\frac{\beta}{\beta+1}\right) R_{C}}{R_{E}+\frac{V+h}{I_{B}(\beta+1)}}
$$

d) Now assume that the nominal transistor $\beta_{1}=150, \mathrm{R}_{\mathrm{C}}=1.5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$, and $\mathrm{V}_{\text {th }}=25.9 \mathrm{mV}$. If β increases, the gain will increase also. However, having an R_{E} lowers the amplifier sensitivity to β. What is the minimum value of R_{E} required to insure that if β doubles to $\beta_{2}=300$ the gain will change no more than 10% ? (10 points)

$$
\begin{aligned}
& A_{V}\left(\beta_{2}=300\right)=1.1\left(\beta_{1}=150\right) \\
& \frac{-\frac{300(10 \mu A)}{259 a_{\mu} V}(1.5 k \sim)}{1+\frac{10 \mu A(301)}{25.9 \sim V} R_{E}}=\frac{-\frac{1.1(150)(10 \mu A)}{25.9 n N}(1.5 K \Omega)}{1+\frac{10 \mu A(151)}{25.9 .4 V} R_{E}} \\
& \frac{174}{1+0.116 R_{E}}=\frac{95.6}{1+0.058 K_{E}} \\
& R_{E}=83.00 \\
& \text { Min. } R_{E} \text { for } \operatorname{Av}\left(\beta_{2}=300\right)=1.1^{*} \operatorname{Av}\left(\beta_{1}=150\right): 83.02 \\
& \text { e) Using the } R_{E} \text { value computed in part (d), calculate } A_{V} \text { for a } \beta \text { of } 150 \text { and 300. Again, assume } \\
& \mathrm{R}_{\mathrm{C}}=1.5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \text {, and } \mathrm{V}_{\mathrm{th}}=25.9 \mathrm{mV} \text {. (5 points) } \\
& A_{V}(\beta=150)=\frac{-\frac{150\left(10_{\mu} A\right)}{25.9 \mu V}(1.5 k)}{1+\frac{10 \mu A(151)}{25.90 V}(83)}=-14,9 \mathrm{~V} / \mathrm{V} \\
& A_{v}\left(\beta_{1}=150\right)=-14,9 \mathrm{~V} / \mathrm{V} \\
& A_{v}\left(\beta_{2}=300\right)=-16.3 \mathrm{~V} / \mathrm{V} \\
& A_{V}(\beta=300)=\frac{-\frac{300(10 \mu \mathrm{~A})}{25.9 \mathrm{mV}}(1.5 \mathrm{~K})}{1+\frac{10 \mu \mathrm{~A}(301)}{25.9 \mathrm{VV}}(83)}=-16.3 \mathrm{~V}
\end{aligned}
$$

