Texas A\&M University Department of Electrical and Computer Engineering

ECEN 325 - Electronics

Spring 2024

Exam \#1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 6 pages in your exam
- Good Luck!

Problem	Score	Max Score
1		30
2		25
3		25
4		20
Total		$\mathbf{1 0 0}$

Name:
SAM
PALERMO
UN:

Problem 1 (30 points)
Plot the magnitude and phase response of the following transfer function. Label key points and slopes.

$$
\begin{gathered}
H(s)=\frac{\left(s+10^{4}\right)\left(s+10^{6}\right)}{10^{5}\left(s+10^{5}\right)} \\
20 \log \mid 0^{\mid(f(s))}(d B)
\end{gathered}
$$

个

$$
\begin{aligned}
& L F_{\text {gain }}=1=O d B \\
& H F_{\text {gain }}=\infty=\infty d B \\
& Z_{1}=-10^{4}, Z_{2}=-10^{6} \\
& P_{1}=-10^{5}
\end{aligned}
$$

$$
L F \text { Phase }=0^{\circ}
$$

$$
\text { HF Phase }=0^{\circ}+2\left(90^{\circ}\right)+1\left(-90^{\circ}\right)
$$

$$
=90^{\circ}
$$

Problem 2 (25 points)
Assume for problem 2 that all operational amplifiers are ideal, unless specifically noted.
a) Design the following ideal integrator circuit to have a $10 \mathrm{k} \Omega$ input resistance and implement the following transfer function. (15 points)

$$
\begin{aligned}
& V_{o}(s)=-\frac{10^{7}}{s} V_{i}(s) \\
& V_{0}(s)=-\frac{z_{c}}{z_{R}} V_{i}(s)=-\frac{1}{s R C} V_{i}(s)
\end{aligned}
$$

$$
R_{\text {in }}=R=10 \mathrm{k} n
$$

$$
\mathrm{R}=10 \mathrm{kn}
$$

$$
\begin{aligned}
-\frac{1}{S R C}=-\frac{10^{7}}{5} \Rightarrow c=\frac{17}{R\left(10^{1}\right)} & =\frac{1}{\left(10^{4} R\right)\left(10^{7}\right)} \\
& =10 p \mathrm{~F}
\end{aligned}
$$

$$
\mathrm{C}=10 \mathrm{p} F
$$

b) Now assume that $\mathrm{R}=1 \mathrm{k} \Omega$ and $\mathrm{C}=1 \mathrm{nF}$. Note, this is not the answer to (a). Also, the opamp has an offset voltage $\mathrm{v}_{\mathrm{os}}=5 \mathrm{mV}$ and output saturation voltages of $\mathrm{V}_{\mathrm{SAT}}= \pm 7 \mathrm{~V}$. If the integrator circuit is powered up with $\mathrm{v}_{\mathrm{i}}=0 \mathrm{~V}$ and no initial capacitor voltage, how long does it take for the circuit to saturate? (10 points)

$$
\text { Smut } V_{0}(t)=V_{o s}\left(1+\frac{t}{R c}\right)
$$

Problem 3 (25 points)
Assume for problem 3 that the operational amplifiers is ideal.

a) Find the expression for v_{0} as a function of $v_{i 1}$ and $v_{i 2}$. (10 points)
b) Find the expression for the circuit input resistance seen from vil. (5 points)
c) Find the expression for the circuit input resistance seen from $v_{i 2}$. (5 points)
d) Find the expression for the circuit output resistance. (5 points)
a.

$$
\begin{aligned}
V_{0} & =-\frac{z_{c}}{Z_{R 1}} V_{11}+\left(\frac{z_{R 3}}{z_{R_{2}}+z_{R 3}}\right)\left(1+\frac{z_{c}}{z_{R_{1}} \| Z_{R 5}}\right) V_{i 2} \\
& =-\frac{1}{S R_{1}<} V_{11}+\left(\frac{R_{3}}{R_{2}+R_{3}}\right)\left(1+\frac{1}{S\left(\left(\frac{R_{1} R_{5}}{R_{1}+R_{5}^{-5}}\right)\right.}\right) V_{12}
\end{aligned}
$$

b. $R_{\text {in }}$ for $V_{i 1}=R_{1}$
c. Kin for $V_{i 2}=R_{2}+R_{3}$
d. $\quad R_{\partial U T}=\varnothing$

$$
R_{0}=\frac{V_{0}}{i_{0}}=\frac{\phi}{i_{0}}=\phi
$$

Problem 4 (20 points)
The operational amplifier for this problem has a finite slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$.
a) For an output 200 kHz sine wave, what is the maximum amplitude that can be reproduced without distortion? (10 points)

$$
\begin{aligned}
& \max \left|\frac{d V_{0}(t)}{d t}\right| \leq S R \\
& V_{0}(t)=A \sin \omega t \\
& \frac{d V_{0}(t)}{d t}=A \omega \cos \omega t \\
& \max \left|A_{\omega} \cos \omega t\right|=A \omega \leq 5.796 \mathrm{~V} \\
& A \leq \frac{S R}{\omega}=\frac{1 / \mu s}{2 \pi\left(200 k H_{t}\right)}=0.796 \mathrm{~V}
\end{aligned}
$$

b) For an output 4 V amplitude triangle wave, what is the minimum period that can be reproduced without distortion?
(10 points)

$$
\begin{aligned}
& \max \left|\frac{d U_{0}(t)}{d t}\right| \leq S R \\
& \max \left|\frac{d U_{0}(t)}{d t}\right|=\left|\frac{-4 V \cdot 4 V}{3 T / 4-T / 4}\right|=\frac{8 V}{T / 2}=\frac{16 V}{T} \\
& \frac{16 V}{T} \leq S R \\
& T \geq \frac{16 V}{S R}=\frac{16 V}{1 V / \mu s}=16 \mu s
\end{aligned}
$$

