Texas A\&M University Department of Electrical and Computer Engineering

ECEN 325 - Electronics

Spring 2021

Exam \#1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are $\mathbf{6}$ pages in your exam
- Good Luck!

Problem	Score	Max Score
1		30
2		25
3		25
4		20
Total		$\mathbf{1 0 0}$

Name: SAM PALERMO

UN:

Problem 1 (30 points)
Plot the magnitude and phase response of the following transfer function. Label key points and slopes.

Problem 2 (25 points)
Assume for Problem 2 circuits that all operational amplifiers are ideal.
For the following circuit:
i. Obtain the transfer function, $\mathrm{v}_{\mathrm{o}}(\mathrm{s}) / \mathrm{v}_{\mathrm{i}}(\mathrm{s})$
ii. Set the component values to achieve a 100Ω input resistance, 40 dB low-frequency gain (magnitude), and a pole frequency of $\left|\omega_{\mathrm{p}}\right|=100 \mathrm{krad} / \mathrm{s}$.

$$
\begin{gathered}
\frac{v_{0}}{v_{i}}=\frac{-z_{R_{1}} \| z_{c}}{z_{R_{2}}}=-\frac{1}{\left(\frac{1}{R_{1}}+s c\right) R_{2}}=\frac{-\frac{R_{1}}{R_{2}}}{1+s R_{1} C} \\
\frac{v_{0}}{v_{i}}=\frac{-\frac{R_{1}}{R_{2}}}{1+s R_{1} C}
\end{gathered}
$$

$$
\begin{aligned}
& R_{\text {in }}=R_{2}=100 \mathrm{~N} \\
&\left|\mathrm{LF}_{\text {gain }}\right|=40 d B=100 \Rightarrow R_{1}=100 R_{2}=100(100) \\
&=10 \mathrm{k} \\
&\left|\omega_{p}\right|=\frac{1}{R_{1} C}=100 \mathrm{krad} / \mathrm{s} \\
& C=\frac{1}{R_{1}\left|\omega_{p}\right|}=\frac{1}{(10 \mathrm{kr})(100 \mathrm{kd} / \mathrm{s})}=\ln \mathrm{F} \\
& \begin{array}{l}
R_{1}
\end{array}=10 \mathrm{kR} \\
& R_{2}=100 \mathrm{R} \\
& C=\ln \mathrm{F}
\end{aligned}
$$

Problem 3 (25 points)
Assume for Problem 3 circuits that all operational amplifiers are ideal.
For the following circuit obtain the expression for v_{o} as a function of $v_{i 1}, v_{i 2}$, and $v_{i 3}$. Assume ideal opamps. Hint: apply superposition.

Problem 4 (20 points)
The step response of a unity-gain voltage follower constructed with a single-pole opamp with unity gain frequency, ω_{u}, is given below. The operational amplifier for this problem has a finite slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$. Given an input step amplitude $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}$, what is the maximum opamp unity gain frequency, ω_{u}, that the opamp can have and still produce an undistorted single-pole transient step response?

$$
A(S)=\frac{\omega_{u}}{S+\omega_{1}}
$$

$$
\operatorname{Max} \omega_{u}=2 \mathrm{Mrad} / \mathrm{s}
$$

