Texas A&M University Department of Electrical and Computer Engineering

ECEN 325 - Electronics

Spring 2020

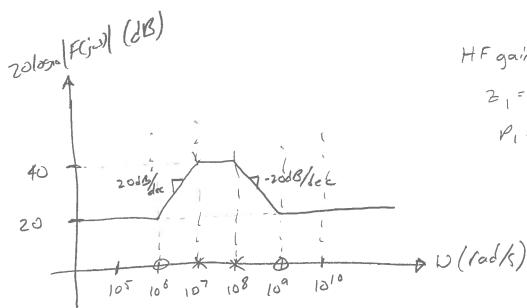
Exam #1

Instructor: Sam Palermo

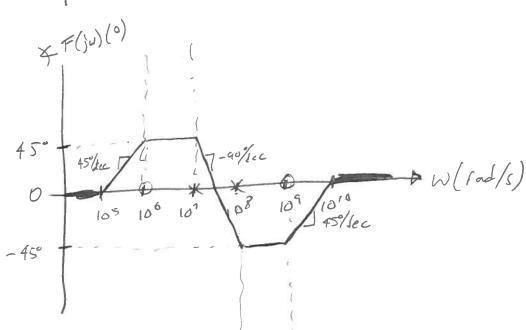
- Please write your name in the space provided below
- Please verify that there are 5 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score
1		30
2		50
3	·	20
Total		100

Name:	SAM	PALERMO	
UIN:			


Problem 1 (30 points)

Plot the magnitude and phase response of the following transfer function. Label key points and slopes.


$$F(s) = \frac{10(s+10^6)(s+10^9)}{(s+10^7)(s+10^8)}$$

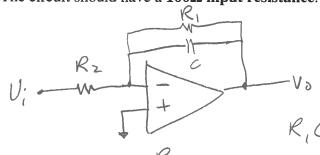
$$DC gain = \frac{10(10^6)(10^9)}{(10^7)(10^8)} = \frac{10^{16}}{10^{15}} = 10$$

$$= 20 dB$$

HF gain =
$$10 \Rightarrow 20dB$$

 $2_1 = -10^6$, $2_2 = -10^9$
 $P_1 = -10^7$, $P_2 = -10^8$
LF Phase = 0°

 $R_{1} = 10kR$ $R_{2} = 100R$ C = 100pF

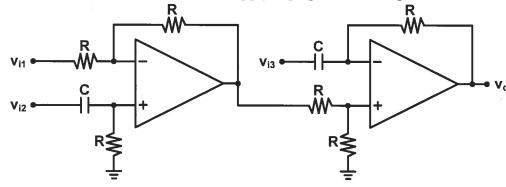

Problem 2 (50 points)

Assume for problem 2 circuits that all operational amplifiers are ideal.

Design an operational amplifier circuit to implement the following transfer function. a)

$$\frac{V_o(s)}{V_i(s)} = -\frac{100}{1 + \frac{s}{10^6}}$$

The circuit should have a 100Ω input resistance. (25 points)



$$R_{i}C = \frac{1}{106}$$

$$\frac{V_{o}}{V_{i}} = \frac{-R_{1}}{R_{2}}$$

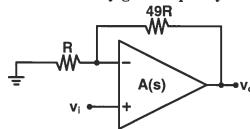
$$C = \frac{1}{10^{6}R_{i}} = \frac{100(10K\Lambda)}{10^{6}(10K\Lambda)} = 1000pF$$

b) For the following circuit obtain the expression for v₀ as a function of v₁₁, v₁₂, and v₁₃. Assume ideal opamps. Hint: apply superposition. (25 points)

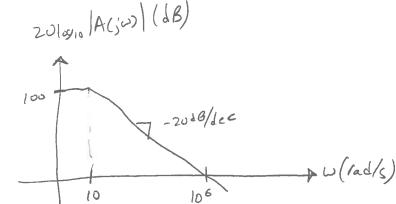
$$V_{0} = (-1)(\frac{1}{2})(1 + \frac{2R}{2c})V_{i1} + (\frac{2R}{2c+2R})(2)(\frac{1}{2})(1 + \frac{2R}{2c})V_{i2} - \frac{2R}{2c}V_{i3}$$

$$V_{0} = -\frac{1}{2}(1 + sRC)V_{i1} + sRCV_{i2} - sRCV_{i3}$$

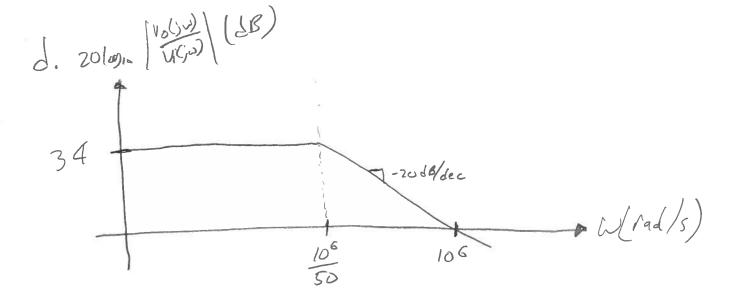
Problem 3 (20 points)


The operational amplifier used in the remainder of the problem has the following **open-loop** transfer function

$$A(s) = \frac{10^5}{1 + \frac{s}{10}}$$


- a) Sketch the **open-loop** magnitude response of the operational amplifier. **Make sure to label the unity-gain frequency.**
- b) The finite gain-bandwidth operational amplifier from part (a) is used in the following amplifier circuit. Find the expression for the **closed-loop** transfer function (v_0/v_1) .
- c) What is the **closed-loop** -3dB frequency (bandwidth) of the total amplifier circuit?

a.


d) Sketch the closed-loop magnitude response of the amplifier circuit. Make sure to label the unity-gain frequency.

b. Vo(s) = 50

$$C. \ \omega_{cl} = \frac{10^6}{50}$$

Scratch Paper