Texas A\&M University Department of Electrical and Computer Engineering

EDEN 325 - Electronics

Fall 2022

Exam \#1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are $\mathbf{6}$ pages in your exam
- Good Luck!

Problem	Score	Max Score
1		30
2		25
3		25
4		20
Total		$\mathbf{1 0 0}$

Name: SAM PALERMO

UN:

Problem 1 (30 points)
Plot the magnitude and phase response of the following transfer function. Label key points and slopes.

$$
H(s)=\frac{\left(s+10^{4}\right)\left(s+10^{6}\right)}{10^{2} s^{2}}
$$

$$
20 \log |H(j \omega)|(d B)
$$

$$
20 \log 10
$$

$$
\begin{aligned}
& D C \text { gain }=\frac{s^{2}}{10^{2} s^{2}}=\frac{1}{100}=-40+18
\end{aligned}
$$

$$
\begin{aligned}
z_{1}=-10^{4} \quad z_{2} & =-10^{6} \\
p_{1}=p_{2} & =0 \\
\text { LFPhave } & =2000^{\circ} \\
& =2\left(-90^{\circ}\right) \\
& =-120^{\circ} \\
H F P h a c & =-180^{\circ}+2\left(40^{\circ}\right) \\
& =0^{\circ}
\end{aligned}
$$

Problem 2 (25 points)
Assume for Problem 2 circuits that all operational amplifiers are ideal.
For the following circuit:
i. Obtain the transfer function, $\mathrm{v}_{0}(\mathrm{~s}) / \mathrm{v}_{\mathrm{i}}(\mathrm{s})$
ii. Set the component values to achieve a $1 \mathrm{k} \Omega$ high-frequency input resistance, 20 dB highfrequency gain (magnitude), and a pole frequency of $\left|\omega_{p}\right|=10 \mathrm{krad} / \mathrm{s}$.

$$
\begin{array}{r}
\frac{U_{0}(s)}{V_{i}(1)}=-\frac{2 R_{3}}{2 R_{1}+2 c}=\frac{R_{3}}{R_{1}+\frac{1}{s c}}=-\frac{V_{0}(s)}{U_{i}(s)}=\frac{R_{3}}{R_{1}}=-5+\frac{1}{R_{1}}
\end{array}
$$

$$
\begin{aligned}
& H F R_{\text {in }}=R_{1}=1 k \wedge \\
& \begin{aligned}
&|1+F \operatorname{lain}|=\frac{R_{3}}{R_{1}}=10 \Rightarrow R_{3}=10 R_{1}=10 k \Omega \\
&\left|\omega_{p}\right|=\frac{1}{R_{1} C} \Rightarrow C=\frac{1}{R_{1}\left|\omega_{p}\right|}=\frac{1}{(1 k n)(10 k)} \\
&=100 n \mathrm{~F}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=1 \mathrm{kn} \\
& R_{3}=10 \mathrm{k} \Omega \\
& C=100 \mathrm{~F}
\end{aligned}
$$

Problem 3 (25 points)
Assume for Problem 3 circuits that all operational amplifiers are ideal.
For the following circuit obtain the expression for v_{o} as a function of $v_{i 1}, v_{i 2}$, and $v_{i 3}$. Assume ideal opamps. Hint: apply superposition.

$$
-\frac{Z_{c}}{Z R} V_{i 3}
$$

$$
=\left(-\frac{1}{2}\right)\left(\frac{z_{R}}{z_{c}}+1\right) V_{i 1}-\frac{1}{2}\left(1+\frac{z_{C}}{z_{R}}\right) V_{i z}-\frac{z_{C}}{z_{R}} U_{i 3}
$$

Problem 4 (20 points)
The operational amplifier used in the remainder of the problem has the following open-loop transfer function

$$
A(s)=\frac{10^{4}}{1+\frac{s}{10^{2}}}
$$

a) Sketch the open-loop magnitude response of the operational amplifier. Make sure to label the unity-gain frequency.
b) The finite gain-bandwidth operational amplifier from part (a) is used in the following amplifier circuit. Find the expression for the closed-loop transfer function $\left(v_{0} / v_{i}\right)$.
c) What is the closed-loop - 3dB frequency (bandwidth) of the total amplifier circuit?
d) Sketch the closed-loop magnitude response of the amplifier circuit. Make sure to label the unity-gain frequency.

$$
20 \log _{10} \mid A C ; 21(d B)
$$

a

b. $\frac{v_{0}(s)}{v_{1}(s)}=\frac{-20}{1+\frac{s}{10 \frac{s}{21}}}$

$$
c_{0} \omega_{C L}=\frac{10^{6}}{21} \mathrm{rad} / \mathrm{s}
$$

