

SLOS094G - NOVEMBER 1970-REVISED JANUARY 2018

uA741

µA741 General-Purpose Operational Amplifiers

Features

- **Short-Circuit Protection**
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- No Latch-Up

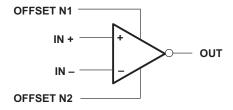
Applications

- **DVD Recorders and Players**
- **Pro Audio Mixers**

3 Description

The µA741 device is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 12.


The µA741C device is characterized for operation from 0°C to 70°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
μA741CD	SOIC (8)	4.90 mm × 3.91 mm
μA741CP	PDIP (8)	9.81 mm × 6.35 mm
μA741CPS	SO (8)	6.20 mm × 5.30 mm

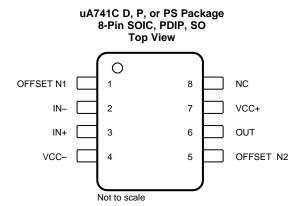
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Features 1	7.3 Feature Description
2	Applications 1	7.4 Device Functional Modes11
3	Description 1	7.5 µA741Y Chip Information11
4	Revision History2	8 Application and Implementation 12
5	Pin Configurations and Functions 4	8.1 Application Information
6	Specifications5	8.2 Typical Application
U	6.1 Absolute Maximum Ratings	9 Power Supply Recommendations 14
	6.2 Recommended Operating Conditions	10 Layout 14
	6.3 Thermal Information	10.1 Layout Guidelines14
	6.4 Electrical Characteristics: μA741C	10.2 Layout Example 14
	6.5 Electrical Characteristics: µA741Y7	11 Device and Documentation Support 16
	6.6 Switching Characteristics: µA741C	11.1 Receiving Notification of Documentation Updates 16
	6.7 Switching Characteristics: µA741Y	11.2 Trademarks
	6.8 Typical Characteristics	11.3 Electrostatic Discharge Caution
7	Detailed Description 10	11.4 Glossary
•	7.1 Overview	12 Mechanical, Packaging, and Orderable
	7.2 Functional Block Diagram	Information 16
	· · = · · · · · · · · · · · · · · · · ·	

4 Revision History


Cł	Inges from Revision E (January 2015) to Revision F Updated data sheet text to the latest documentation and translation standards Deleted text regarding μΑ741M device (obsolete package) from Description section			
•	Changed supply voltage unit from "°C" to "V" in Absolute Maximum Ratings table	5		
Cł	nanges from Revision E (January 2015) to Revision F	је		
•	Updated data sheet text to the latest documentation and translation standards	1		
•	Deleted text regarding µA741M device (obsolete package) from Description section	1		
•	Added µA741CD, µA741CP, and µA741CPS devices to Device Information table	1		
•	Deleted µA741x device from <i>Device Information</i> table	1		
•	Updated pinout diagrams and Pin Functions tables in the Pin Configurations and Functions section	4		
•	Deleted µA741M pinout drawings information from <i>Pin Configurations and Functions</i> section	4		
•	Deleted Electrical Characteristics: µA741M table from Specifications section	5		
•	Added operating junction temperature (T _J) and values to <i>Absolute Maximum Ratings</i> table	5		
•	Deleted text regarding µA741M from Absolute Maximum Ratings table	5		
•	Deleted text regarding µA741M device from Recommended Operating Conditions table	5		
•	Deleted Dissipation Ratings table	5		
•	Added Thermal Information table and values	5		
•	Deleted µA741M in Switching Characteristics table	7		
•	Correct typo in Figure 1	8		
•	Deleted text regarding µA741M device from <i>Detailed Description</i> section	10		
•	Updated text in Overview section	10		
•	Added 2017 copyright to Functional Block Diagram 1	10		
•	Added caption to Figure 11 in Device Functional Modes section	11		
•	Changed pins 1 and 5 from "NC" to "Offset N1" and "Offset N2" in Figure 18	15		

CI	hanges from Revision D (February 2014) to Revision E	Page
•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	1
•	Moved Typical Characteristics into Specifications section.	8
CI	hanges from Revision C (January 2014) to Revision D	Page
<u>.</u>	Fixed Typical Characteristics graphs to remove extra lines.	8
CI	hanges from Revision B (September 2000) to Revision C	Page
•	Updated document to new TI data sheet format - no specification changes.	1
•	Deleted Ordering Information table.	1

5 Pin Configurations and Functions

NC- no internal connection

Pin Functions

PIN ,,		1/0	DECORIDATION	
NAME	NO.	I/O	DESCRIPTION	
IN+	3	I	Noninverting input	
IN-	2	I	erting input	
NC	8	_	No internal connection	
OFFSET N1	1	I	External input offset voltage adjustment	
OFFSET N2	5	I	External input offset voltage adjustment	
OUT	6	0	Output	
VCC+	7	_	Positive supply	
VCC-	4	_	Negative supply	

6 Specifications

6.1 Absolute Maximum Ratings

over virtual junction temperature range (unless otherwise noted)⁽¹⁾

over virtual junicilon temperature range (unit			MIN	MAX	UNIT
Supply voltage, V _{CC} ⁽²⁾	μA741C		-18	18	V
Differential input voltage, V _{ID} ⁽³⁾	μA741C		-15	15	V
Input voltage, V _I (any input) (2)(4)	μA741C		-15	15	V
Voltage between offset null (either OFFSET N1 or OFFSET N2) and $\rm V_{CC-}$	μΑ741C		-15	15	V
Duration of output short circuit ⁽⁵⁾			Unlimited		
Continuous total power dissipation			See Thermal Information		
Case temperature for 60 seconds		μΑ741C	N/A	N/A	°C
Lead temperature 1.6 mm (1/16 inch) from case for 60 s	econds	μΑ741C	N/A	N/A	°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	D, P, or PS package	μA741C		260	°C
Operating junction temperature, T _J				150	°C
Storage temperature range, T _{stg}		μA741C	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
- (3) Differential voltages are at IN+ with respect to IN -.
- (4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- (5) The output may be shorted to ground or either power supply.

6.2 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{CC+}	Cumply voltage		5	15	\/
V _{CC} -	Supply voltage		-5	-15	V
T _A	Operating free-air temperature	μΑ741C	0	70	°C

6.3 Thermal Information

			μΑ741				
	THERMAL METRIC ⁽¹⁾	D (SOIC)	P (PDIP)	PS (SO)	UNIT		
		8 PINS	8 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	129.2	87.4	119.7	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	73.6	89.3	66	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	72.4	64.4	70	°C/W		
ΨЈТ	Junction-to-top characterization parameter	25.9	49.8	27.2	°C/W		
ΨЈВ	Junction-to-board characterization parameter	71.7	64.1	69	°C/W		

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: uA741

6.4 Electrical Characteristics: μΑ741C

at specified virtual junction temperature, $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT	
\	Innuit offect voltage	V 0	25°C		1	6	mV	
V _{IO}	Input offset voltage	V _O = 0	Full range			7.5	mv	
$\Delta V_{IO(adj)}$	Offset voltage adjust range	V _O = 0	25°C		±15		mV	
1	Input offset current	V 0	25°C		20	200	nA	
Ю	input onset current	V _O = 0	Full range			300	ΠA	
1	Input bias current	V _O = 0	25°C		80	500	nA	
I _{IB}	input bias current	v _O = 0	Full range			800	IIA	
\/	Common-mode input voltage range	25°C		±12	±13		V	
V _{ICR}	Common-mode input voltage range	Full range		±12			V	
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±14			
\	Maximum pools output voltage avring	R _L ≥ 10 kΩ	Full range	±12			V	
V _{OM}	Maximum peak output voltage swing	$R_L = 2 k\Omega$	25°C	±10			V	
		$R_L \ge 2 k\Omega$	Full range	±10				
^	Large-signal differential voltage	$R_L \ge 2 k\Omega$	25°C	20	200		V/mV	
A _{VD}	amplification	V _O = ±10 V	Full range	15			V/IIIV	
r _i	Input resistance	25°C		0.3	2		$M\Omega$	
r _o	Output resistance	$V_0 = 0$; see ⁽²⁾	25°C		75		Ω	
C _i	Input capacitance	25°C			1.4		pF	
CMRR	Common-mode rejection ratio	V - V	25°C	70	90		dB	
CIVIKK	Common-mode rejection ratio	$V_{IC} = V_{ICRmin}$	Full range	70			ав	
ما	Supply voltage consitivity (AV /AV)	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$	25°C		30	150	μV/V	
k _{SVS}	Supply voltage sensitivity ($\Delta V_{IO}/\Delta V_{CC}$)	V _{CC} = ±9 V (0 ±15 V	Full range			150 µ	μν/ν	
os	Short-circuit output current	25°C			±25	±40	mA	
	Supply ourrent	V = 0: no load	25°C		1.7	2.8	m ^	
cc	Supply current	pply current $V_0 = 0$; no load	Full range			3.3	mA	
-	Total names discination	V O. no load	25°C		50	85	m\\\/	
P _D	Total power dissipation	$V_O = 0$; no load	Full range			100	mW	

All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.
 Full range for the μA741C is 0°C to 70°C.

⁽²⁾ This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

6.5 Electrical Characteristics: μΑ741Υ

at specified virtual junction temperature, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS (2)	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	V _O = 0		1	5	mV
$\Delta V_{IO(adj)}$	Offset voltage adjust range	V _O = 0		±15		mV
I _{IO}	Input offset current	V _O = 0		20	200	nA
I _{IB}	Input bias current	V _O = 0		80	500	nA
V _{ICR}	Common-mode input voltage range		±12	±13		V
	Management and a section of the section of	$R_L = 10 \text{ k}\Omega$	±12	±14		
V_{OM}	Maximum peak output voltage swing	$R_L = 2 k\Omega$	±10	±13		V
A _{VD}	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$	20	200		V/mV
ri	Input resistance		0.3	2		ΜΩ
r _o	Output resistance	V _O = 0; see ⁽¹⁾		75		Ω
Ci	Input capacitance			1.4		pF
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICRmin}	70	90		dB
k _{SVS}	Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC})	V _{CC} = ±9 V to ±15 V		30	150	μV/V
I _{OS}	Short-circuit output current			±25	±40	mA
I _{CC}	Supply current	V _O = 0; no load		1.7	2.8	mA
P _D	Total power dissipation	V _O = 0; no load		50	85	mW

⁽¹⁾ This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

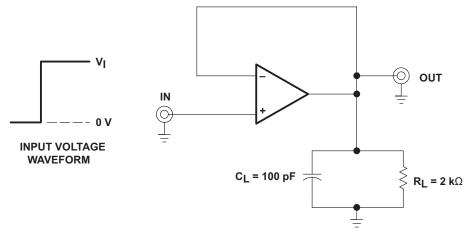
6.6 Switching Characteristics: μΑ741C

over operating free-air temperature range, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

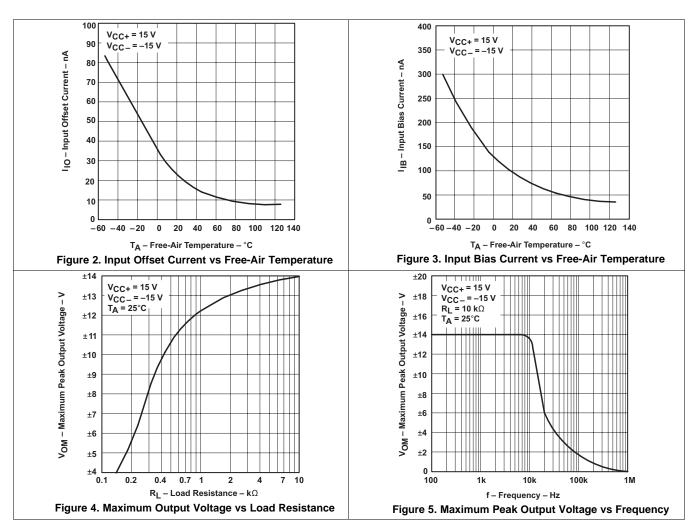
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time	$V_{l} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega$		0.3		μs
	Overshoot factor	C _L = 100 pF; see Figure 1		5%		
SR	Slew rate at unity gain	V_I = 10 V, R_L = 2 k Ω C_L = 100 pF; see Figure 1		0.5		V/µs

6.7 Switching Characteristics: µA741Y

over operating free-air temperature range, $V_{CC\pm}$ = ±15 V, T_A = 25°C (unless otherwise noted)

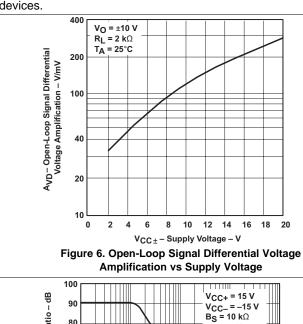

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time	V_{I} = 20 mV, R_{L} = 2 k Ω C_{L} = 100 pF; see Figure 1		0.3		μs
	Overshoot factor			5%		
SR	Slew rate at unity gain	$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega$ $C_L = 100 \text{ pF}; \text{ see Figure 1}$		0.5		V/µs

⁽²⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.



6.8 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TEST CIRCUIT Figure 1. Rise Time, Overshoot, and Slew Rate

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

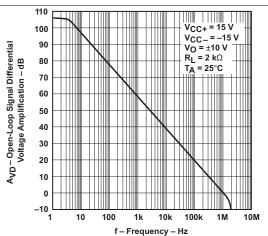
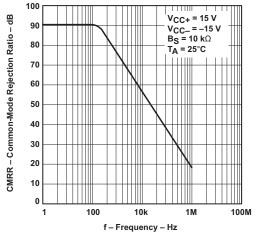



Figure 7. Open-Loop Large-Signal Differential Voltage Amplification vs Frequency

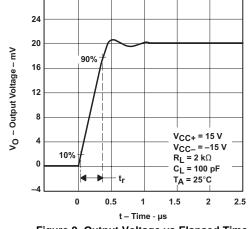
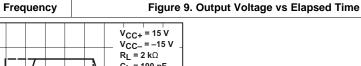



Figure 8. Common-Mode Rejection Ratio vs Frequency

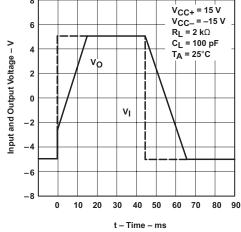
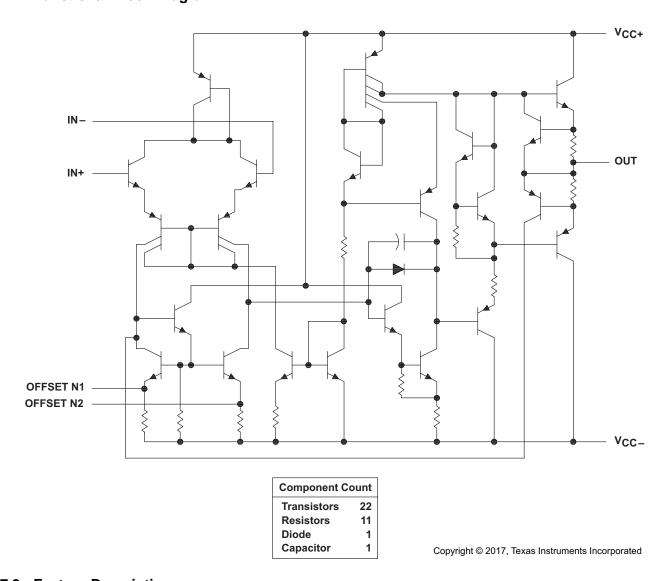


Figure 10. Voltage-Follower Large-Signal Pulse Response



7 Detailed Description

7.1 Overview

The μ A741 has been a popular operational amplifier for over four decades. Typical open loop gain is 106 dB while driving a 2000- Ω load. Short circuit tolerance, offset voltage trimming, and unity-gain stability makes the μ A741 useful for many applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Offset-Voltage Null Capability

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-gain betas (β), collector or emitter resistors and so forth. The input offset pins allow the designer to adjust for mismatches caused by external circuitry. See *Application and Implementation* for more details on design techniques.

Feature Description (continued)

7.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change an output when there is a change on the input. The µA741 device has a 0.5-V/µs slew rate. Parameters that vary significantly with operating voltages or temperature are shown in Typical Characteristics.

7.4 Device Functional Modes

The µA741 device is powered on when the power supply is connected. The device can operate as a singlesupply or dual-supply operational amplifier depending on the application.

7.5 µA741Y Chip Information

When properly assembled, this chip displays characteristics similar to the µA741C device. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips can be mounted with conductive epoxy or a gold-silicon preform.

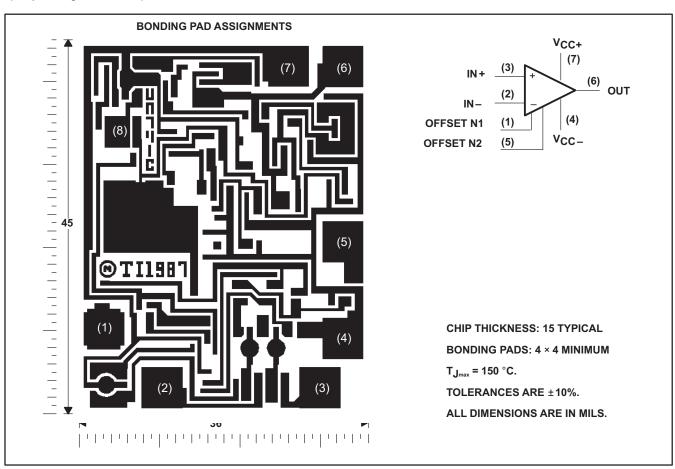


Figure 11. Bonding Pad Assignments

Product Folder Links: uA741

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-gain betas (β), collector or emitter resistors and so forth. The input offset pins allow the designer to adjust for mismatches resulting from external circuitry. These input mismatches can be adjusted by placing resistors or a potentiometer between the inputs as shown in Figure 12. A potentiometer can fine-tune the circuit during testing or for applications which require precision offset control. For more information about designing using the input-offset pins, see *Nulling Input Offset Voltage of Operational Amplifiers*.

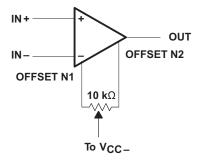


Figure 12. Input Offset Voltage Null Circuit

8.2 Typical Application

The voltage follower configuration of the operational amplifier is used for applications where a weak signal drives a relatively high current load. This circuit is also called a buffer amplifier or unity-gain amplifier. The inputs of an operational amplifier have a very high resistance which puts a negligible current load on the voltage source. The output resistance of the operational amplifier is almost negligible, so the resistance can provide as much current as necessary to the output load.

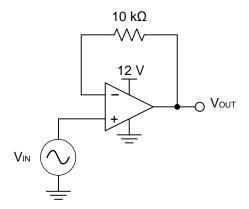


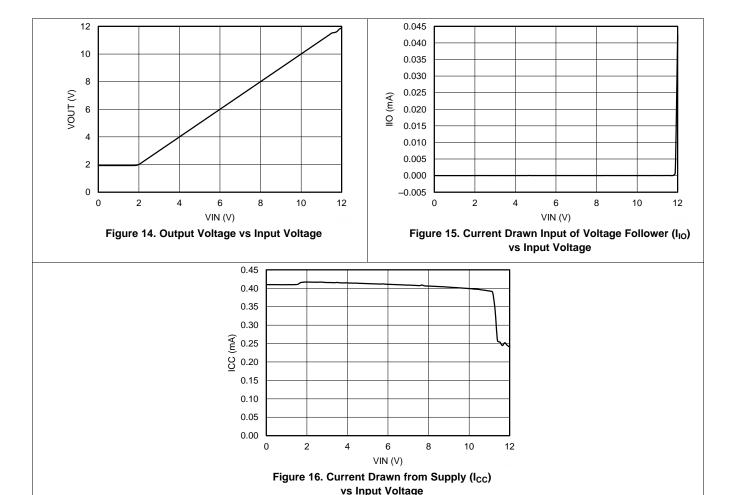
Figure 13. Voltage Follower Schematic

Typical Application (continued)

8.2.1 Design Requirements

- Output range from 2 V to 11.5 V
- Input range from 2 V to 11.5 V
- Resistive feedback to negative input

8.2.2 Detailed Design Procedure


8.2.2.1 Output Voltage Swing

The output voltage of an operational amplifier is limited by the internal circuitry to some level below the supply rails. For this amplifier, the output voltage swing is within ±12 V, which accommodates the input and output voltage requirements.

8.2.2.2 Supply and Input Voltage

For correct operation of the amplifier, neither input must be higher than the recommended positive supply rail voltage or lower than the recommended negative supply rail voltage. The selected amplifier must be able to operate at the supply voltage that accommodates the inputs. Because the input for this application goes up to 11.5 V, the supply voltage must be 12 V. Using a negative voltage on the lower rail rather than ground allows the amplifier to maintain linearity for inputs below 2 V.

8.2.3 Application Curves for Output Characteristics

9 Power Supply Recommendations

The μ A741 device is specified for operation from ±5 to ±15 V; many specifications apply from 0°C to 70°C. *Typical Characteristics* presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, see *Layout Guidelines*.

CAUTION

Supply voltages larger than ±18 V can permanently damage the device (see *Absolute Maximum Ratings*).

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational
 amplifier. Bypass capacitors reduce the coupled noise by providing low impedance power sources local to the
 analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close as possible to the device. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
 A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
 and analog grounds, paying attention to the flow of the ground current. For more detailed information, see
 Circuit Board Layout Techniques.
- To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If
 it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
 opposed to in parallel with the noisy trace.
- Place the external components as close as possible to the device. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in *Layout Example*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

10.2 Layout Example

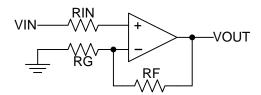


Figure 17. Operational Amplifier Schematic for Noninverting Configuration

Product Folder Links: uA741

Layout Example (continued)

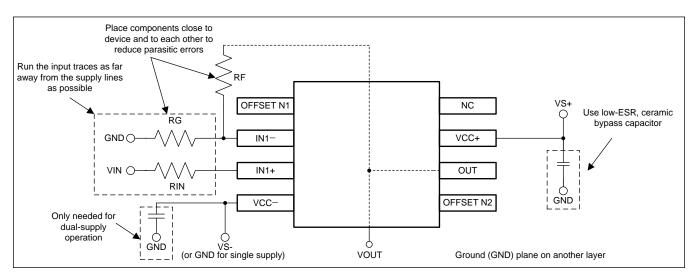


Figure 18. Operational Amplifier Board Layout for Noninverting Configuration

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA741CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA741C	Samples
UA741CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA741C	Samples
UA741CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA741C	Samples
UA741CP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA741CP	Samples
UA741CPE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA741CP	Samples
UA741CPSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	U741	Samples
UA741CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	U741	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

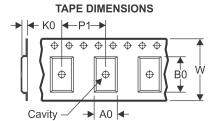
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

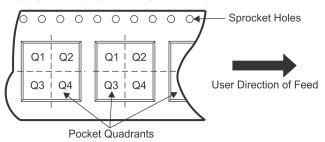
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Dec-2018


TAPE AND REEL INFORMATION

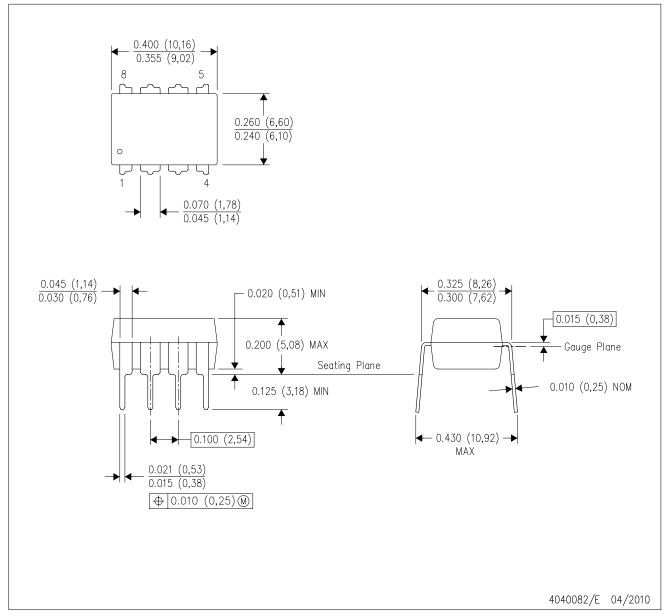
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UA741CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 20-Dec-2018



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA741CDR	SOIC	D	8	2500	340.5	338.1	20.6

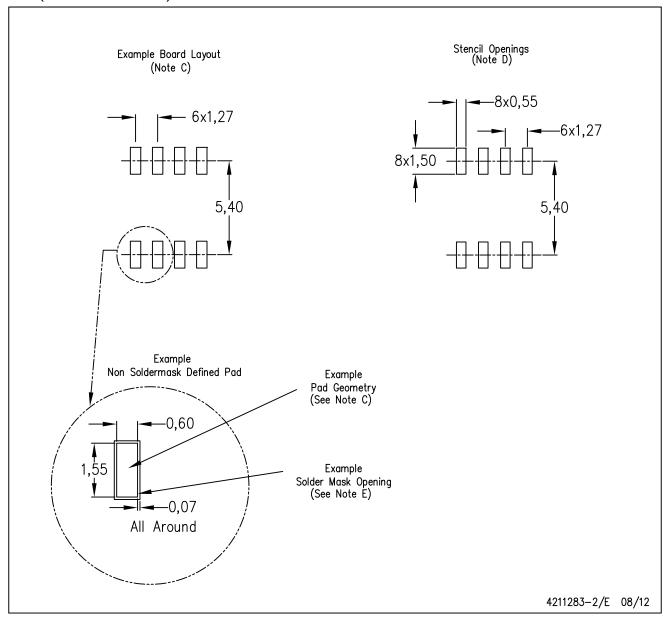
P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

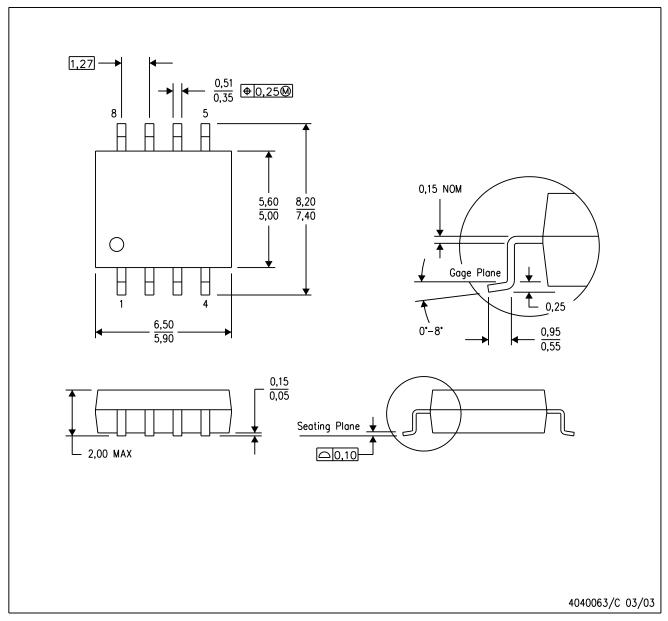
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



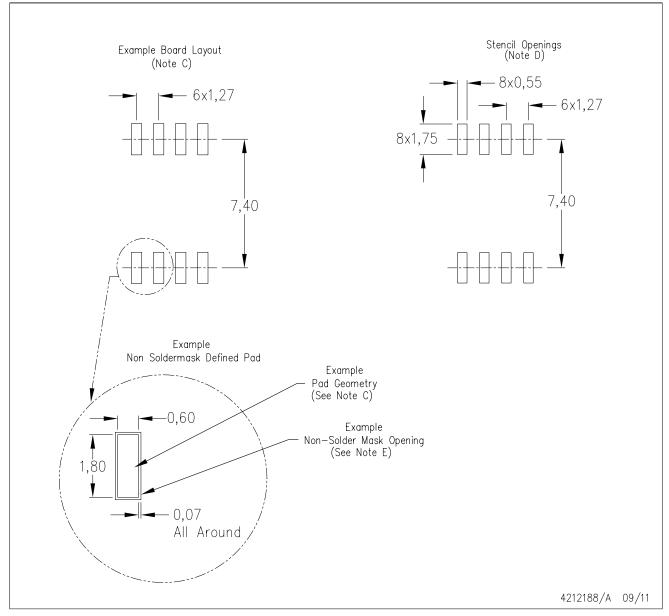
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated

LF155/LF156/LF256/LF257/LF355/LF356/LF357 JFET Input Operational Amplifiers

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET™ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Features

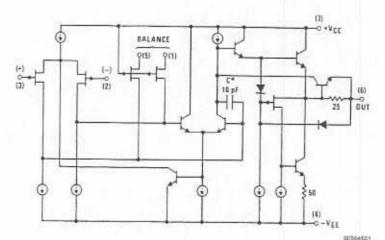
Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance—very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (5,000 pF) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers

- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits


Common Features

- Low input bias current: 30pA
- Low Input Offset Current: 3pA
- High input impedance: 10¹²Ω
- Low input noise current: 0.01 pA/√Hz
- High common-mode rejection ratio: 100 dB
- Large dc voltage gain: 106 dB

Uncommon Features

		LF155/ LF355	LF156/ LF256/ LF356	LF257/ LF357 (A _V =5)	Units
	Extremely fast settling time to 0.01%	4	1.5	1.5	μs
	Fast slew rate	5	12	50	V/µs
ш	Wide gain bandwidth	2.5	5	20	MHz
В	Low input noise voltage	20	12	12	nV/√Hz

Simplified Schematic

*3pF in LF357 series

BI-FET*, BI-FET II* are trademarks of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

±22V	53246	
	±22V	±18V
±40V	±40V	±30V
±20V	±20V	±16V
Continuous	Continuous	Continuous
150°C	115°C	115°C
	100°C	100°C
	100°C	100°C
560 mW	400 mW	400 mW
1200 mW	1000 mW	1000 mW
	670 mW	670 mW
	380 mW	380 mW
160°C/W	160°C/W	160°C/W
65°C/W	65°C/W	65°C/W
	130°C/W	130°C/W
	195°C/W	195°C/W
23°C/W	23°C/W	23°C/W
-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
300°C	300.C	300,C
260°C	260°C	260°C
	215°C	215°C
	220°C	220°C
	±20V Continuous 150°C 560 mW 1200 mW 160°C/W 65°C/W	#20V #20V Continuous 150°C 115°C 100°C 100°C 560 mW 400 mW 1000 mW 670 mW 380 mW 160°C/W 160°C/W 65°C/W 130°C/W 196°C/W 23°C/W 23°C/W 23°C/W -65°C to +150°C 300°C 300°C 260°C 260°C 215°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD tolerance

(100 pF discharged through 1.5kΩ)

1000V

1000V

1000V

DC Electrical Characteristics

(Note 3)

Symbol	Parameter	Conditions	LF155/6			LF256/7 LF356B			LF355/6/7			Units
		373.074.1003.03	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Vos	Input Offset Voltage	R _s =50Ω, T _A =25°C Over Temperature		3	5 7		3	5 6.5		3	10 13	mV mV
ΔV _{os} /ΔT	Average TC of Input Offset Voltage	R _s =50Ω		5			5			5		μV/°C
ΔTC/ΔV _{os}	Change in Average TC with Vos Adjust	R _s =50Ω, (Note 4)		0.5			0.5			0.5		μV/°C per m\
los	Input Offset Current	T _J =25 ⁺ C, (Notes 3, 5) T _J ≤T _{HIGH}		3	20 20		3	20		3	50 2	pA nA

DC Electrical Characteristics (Continued)

(Note 3)

Symbol	Parameter	Conditions	LF155/6			LF256/7 LF356B			LF355/6/7			Units
عبطاء			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
l _B	Input Bias Current	T _J =25°C, (Notes 3, 5) T _J ST _{HIGH}		30	100 50		30	100 5		30	200 8	pА пА
Rin	Input Resistance	T_=25°C	(5.)	1012			1012			1012		Ω
Avot	Large Signal Voltage Gain	V _S =±15V, T _A =25°C V _O =±10V, R _L =2k Over Temperature	50	200		50	200		25 15	200		V/mV V/mV
Vo	Output Voltage Swing	V _S =±15V, R _L =10k	±12	±13		±12	±13		±12	±13		V
		V _S =±15V, R _ε =2k	±10	±12		±10	±12		±10	±12		V
V _{CM}	Input Common-Mode Voltage Range	V _s =±15V	±11	+15.1 -12		±11	±15.1 -12		+10	+15.1 -12		V
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		80	100		dB

DC Electrical Characteristics

 $T_A = T_J = 25^{\circ}C, V_S = \pm 15V$

Barameter	LF	155	LF	355	LF156/256/257/356B LF356 LF357		LF356		357		
Parameter -	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Units
Supply Current	2	4	2	4	5	7	5	10	5	10	mA

AC Electrical Characteristics

 $T_A = T_J = 25^{\circ}C, V_S = \pm 15V$

Symbol	Parameter	Conditions	LF155/355	LF156/256/ 356B	LF156/256/356/ LF356B	LF257/357	Units
20000000000		-55000000000000000000000000000000000000	Тур	Min	Тур	Тур	22/25/200
SR	Slew Rate	LF155/6: A _V =1,	5	7.5	12		V/µs
		LF357: A _V =5				50	V/µs
GBW	Gain Bandwidth Product		2.5		5:	20	MHz
t,	Settling Time to 0.01%	(Note 7)	4		1.5	1.5	μs
e _n	Equivalent Input Noise Voltage	R _s =100Ω f=100 Hz f=1000 Hz	25 20		15 12	15 12	nV/√Hz nV/√Hz
i _n	Equivalent Input Current Noise	f=100 Hz f=1000 Hz	0.01 0.01		0.01 0.01	0.01 0.01	pA/√Hz pA/√Hz
CIN	Input Capacitance		3		3	3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_D^{\mu}(T_{JMAX}^{-}T_A)\theta_{JA}$ or the 25°C P_{DMAX}^{-} whichever is less.

Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

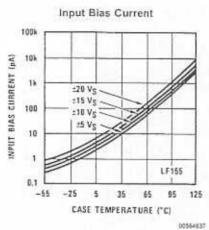
Note 3: Unless otherwise stated, these test conditions apply:

Notes for Electrical Characteristics (Continued)

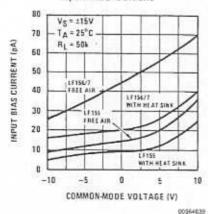
	LF155/156	LF256/257	LF356B	LF355/6/7
Supply Voltage, V _S	$\pm 15 \text{V} \leq \text{V}_{\text{S}} \leq \pm 20 \text{V}$	±15V ≤ V _S ≤ ±20V	±15V ≤ V _S ±20V	V _e = ±15V
TA	-55°C ≤ T _A ≤ +125°C	-25°C ≤ T _A ≤ +85°C	0°C ≤ T _A ≤ +70°C	0°C ≤ T _A ≤ +70°C
T _{HIGH}	+125°C	+85°C	+70°C	+70°C

and V_{OS} , I_B and I_{OS} are measured at $V_{CM} = 0$.

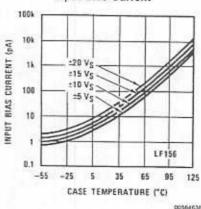
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5µV/°C typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.

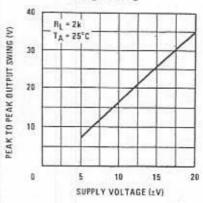

Note 5: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_J . Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $T_J = T_A + \theta_{JA}$ Pd where θ_{JA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

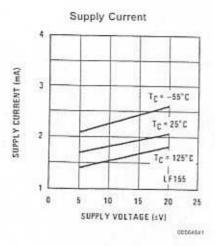
Note 5: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

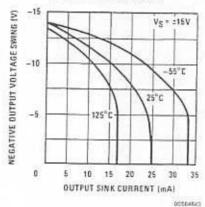

Note 7: Settling time is defined here, for a unity gain inverter connection using 2 k Ω resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF357, $A_{ij} = -5$, the feedback resistor from output to input is $2k\Omega$ and the output step is 10V (See Settling Time Test Circuit).

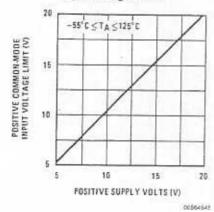
Note 8: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

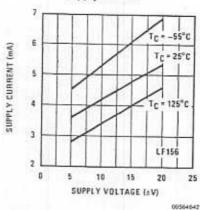

Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise specified.

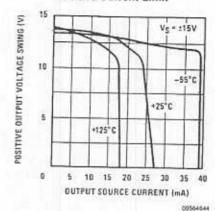


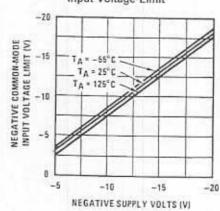

Input Bias Current


Voltage Swing

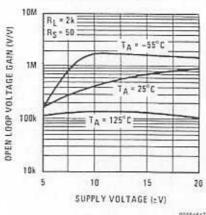

Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise specified. (Continued)



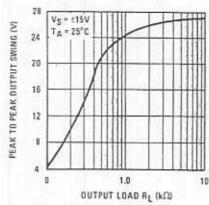

Positive Common-Mode Input Voltage Limit


Supply Current

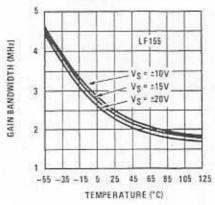
Positive Current Limit



Negative Common-Mode Input Voltage Limit



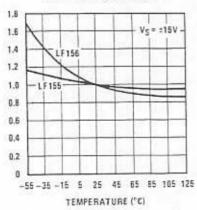
Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise specified, (Continued)


Output Voltage Swing

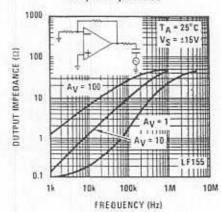

00564848

Typical AC Performance Characteristics

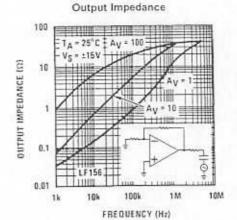
Gain Bandwidth


00564649

Gain Bandwidth

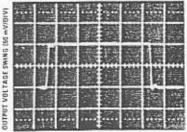

00564850

Normalized Slew Rate



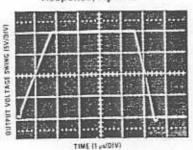
00554651

Output Impedance

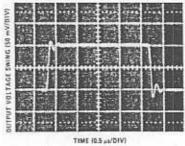


Typical AC Performance Characteristics (Continued)

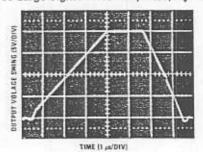
00584653


LF156 Small Signal Pulse Response, Av = +1

TIME (0.5 µN/DIV)


00564600

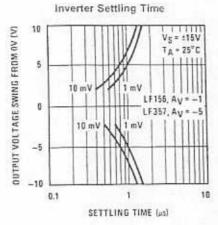
LF156 Large Signal Puls Response, A_v = +1

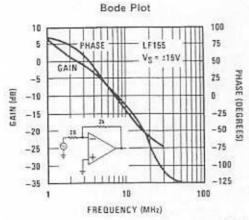

00564605

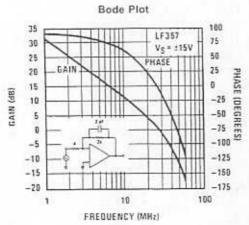
LF155 Small Signal Pulse Response, Av = +1

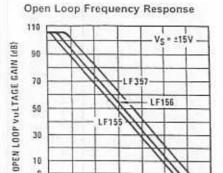


LF155 Large Signal Pulse Response, Av = +1

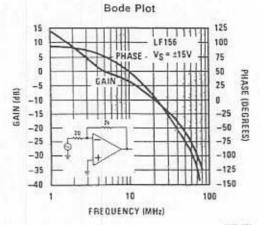


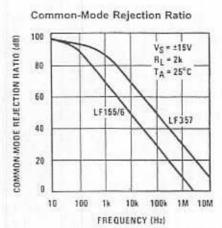

00564608


Inverter Settling Time

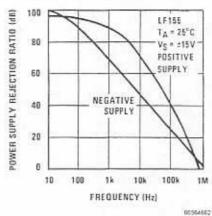


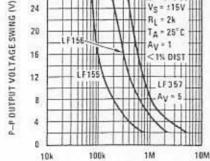
Typical AC Performance Characteristics (Continued)



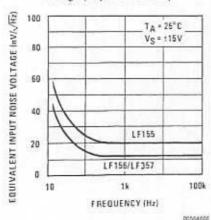


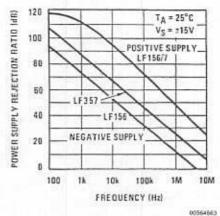
10k 100k 1M 10M


FREQUENCY (Hz)

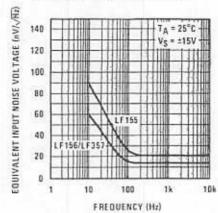

Typical AC Performance Characteristics (Continued)

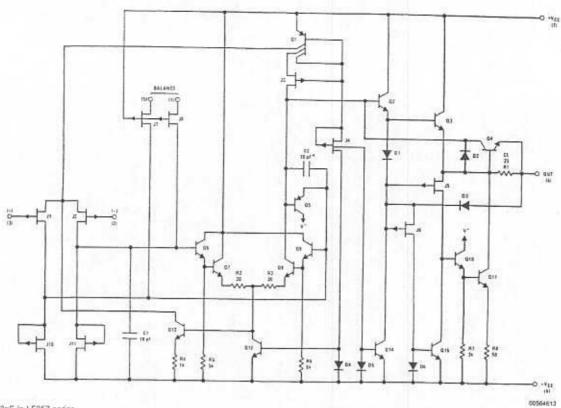
Undistorted Output Voltage Swing



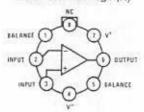

00984664

Equivalent Input Noise Voltage (Expanded Scale)


FREQUENCY (Hz)

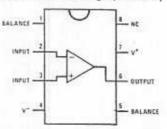

Power Supply Rejection Ratio

Equivalent Input Noise Voltage


Detailed Schematic

*C = 3pF in LF357 series:

Connection Diagrams (Top Views)


Metal Can Package (H)

Order Number LF155H, LF156H, LF256H, LF257H, LF356BH, LF356H, or LF357H See NS Package Number H08C

*Available per JM38510/11401 or JM38510/11402

Dual-In-Line Package (M and N)

Order Number LF356M, LF356MX, LF355N, or LF356N See NS Package Number M08A or N08E

Application Hints

These are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a

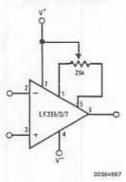
Application Hints (Continued)

reversal of phase to the output. Exceeding the negative ommon-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

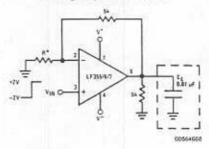
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.


All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedack pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

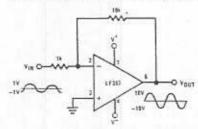

Typical Circuit Connections

Vos Adjustment

- V_{os} is adjusted with a 25k potentiometer
- The potentiometer wiper is connected to V*
- For potentiometers with temperature coefficient of 100 ppm/°C or less the additional drift with adjust is = 0.5μV/°C/mV of adjustment
- Typical overall drift: 5µV/°C ±(0.5µV/°C/mV of adj.)

Driving Capacitive Loads

LF155/6 R = 5k


LF357 R = 1.25k

Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintain stability. $C_{L(MAX)} = 0.01 \mu F$.

Overshoot ≤ 20%

Settling time (t_{*}) ~ 5µs

LF357. A Large Power BW Amplifier

00564615

For distortion ≤ 1% and a 20 Vp-p V_{QUT} swing, power bandwidth is: 500kHz.

1N4001 - 1N4007

Features

- . Low forward voltage drop.
- · High surge current capability.

DO-41 COLOR BAND DENOTES CATHODE

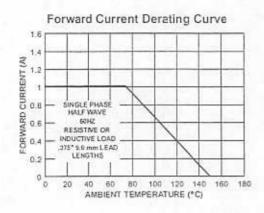
General Purpose Rectifiers

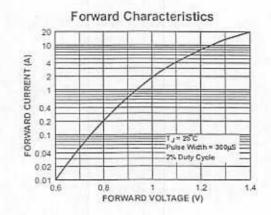
Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

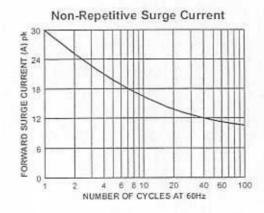
Symbol	Parameter	Value							Units
		4001	4002	4003	4004	4005	4006	4007	
V _{RRM}	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
I _{F(AV)}	Average Rectified Forward Current, .375 " lead length @ T _A = 75°C	1.0						Α	
I _{FSM}	Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave	30					Α		
T _{sto}	Storage Temperature Range	-55 to +175					°C		
Tj	Operating Junction Temperature	-55 to +175				°C			

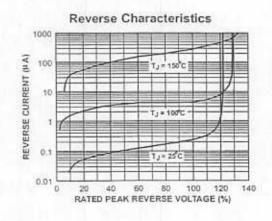
^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

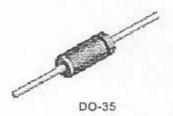

Symbol	Parameter	Value	Units
Po	Power Dissipation	3.0	W
R _{RJA}	Thermal Resistance, Junction to Ambient	50	°C/W


Electrical Characteristics T_ = 25°C unless otherwise noted


Symbol	Parameter		Device						Units
		4001	4002	4003	4004	4005	4006	4007	
V _F	Forward Voltage @ 1.0 A	4.1				V			
I _m	Maximum Full Load Reverse Current, Full Cycle T _A = 75°C	30					μА		
l _R	Reverse Current @ rated V _R T _A = 25°C T ₄ = 100°C	5.0 500				µА µА			
Ст	Total Capacitance V _R = 4.0 V, f = 1.0 MHz	15					pF		


General Purpose Rectifiers

(continued)



1N/FDLL 914/A/B / 916/A/B / 4148 / 4448

LL-34 THE PLACEMENT OF THE EXPANSION GAPHAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

DEVICE	1ST BAND	2HD BAND
FDLL914A FDLL914A FDLL914B FDLL91BA FDLL91BB FDLL91BB FDLL414E FDLL4448	BRÓWN BLACK BLACK BRÓWN BLACK	BROWN GRAY BLACK RED WHITE BROWN BROWN BLACK

Small Signal Diode

Absolute Maximum Ratings*

T₄ = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
VRRM	Maximum Repetitive Reverse Voltage	100	٧
I _{F(AV)}	Average Rectified Forward Current	200	mA
FSM	Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 second Pulse Width = 1.0 microsecond	1.0 4.0	A A
T _{stp}	Storage Temperature Range	-65 to +200	°C
T.	Operating Junction Temperature	175	°C

These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

Symbol	Characteristic	Max	Units
		1N/FDLL 914/A/B / 4148 / 4448	
Pn	Power Dissipation	500	mW
Rese	Thermal Resistance, Junction to Ambient	300	°C/W

NOTES:
1) These ratings are based on a maximum junction temperature of 200 degrees C.
2) These are steady state firms. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Small Signal Diode

(continued)

Electrical Characteristics T_a = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
V _R	Breakdown Voltage	I _n = 100 μA I _n = 5.0 μA	100 75		V
V _F	Forward Voltage 1N914B/4448 1N916B 1N914/916/4148 1N914A/916A 1N916B 1N914B/4448	I _F = 5.0 mA I _E = 5.0 mA I _E = 10 mA I _E = 20 mA I _F = 20 mA I _E = 100 mA	620 630	720 730 1.0 1.0 1.0	mV mV V V
I _R	Reverse Current	V _n = 20 V V _n = 20 V, T _n = 150°C V _n = 75 V		25 50 5.0	nA дд Ац
C ₁	Total Capacitance 1N916A/B/4448 1N914A/B/4148	V _R = 0, f = 1.0 MHz V _B = 0, f = 1.0 MHz		2.0 4.0	pF pF
i,	Reverse Recovery Time	$I_F = 10 \text{ mA}, V_B = 6.0 \text{ V (60mA)},$ $I_D = 1.0 \text{ mA}, R_L = 100\Omega$		4.0	ns

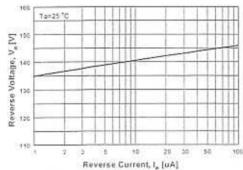
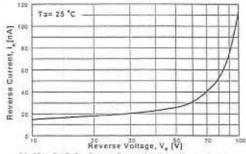



Figure 1. Reverse Voltage vs Reverse Current BV - 1.0 to 100 uA

GENERAL RULE: The Reverse Current of a chode will approximately double for every sen (10) Degree C increase in Temperature
Figure 2. Reverse Current vs Reverse Voltage
IR - 10 to 100 V

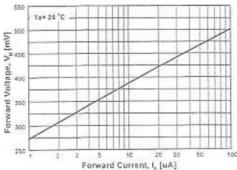


Figure 3. Forward Voltage vs Forward Current VF - 1 to 100 uA

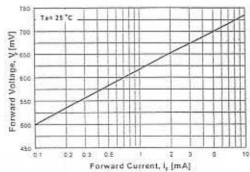


Figure 4. Forward Voltage vs Forward Current VF - 0.1 to 10 mA

Small Signal Diode

(continued)

Typical Characteristics (continued)

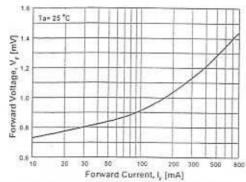


Figure 5. Forward Voltage vs Forward Current VF - 10 to 800 mA

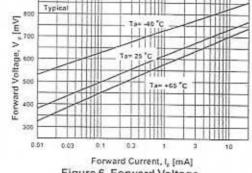


Figure 6. Forward Voltage vs Ambient Temperature VF - 0.01 - 20 mA (-40 to +65 Deg C)

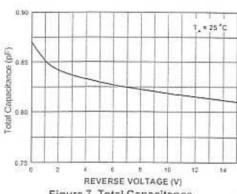


Figure 7. Total Capacitance

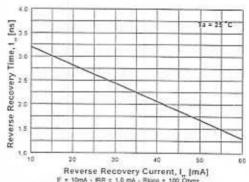


Figure 8. Reverse Recovery Time vs Reverse Recovery Current

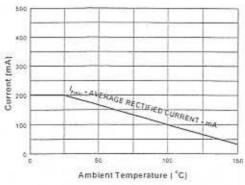


Figure 9. Average Rectified Current (I_{FIAV)})
versus Ambient Temperature (T_A)

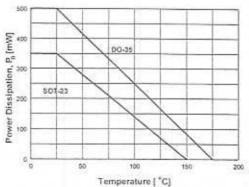


Figure 10. Power Derating Curve

0.018-0.022*

0.458-,558 mm

50

mA

Dia

0.085- 107 2.16-2.71 mm

DO-7 Glass Package

Length

0.230-0.30*

Optimized for Radio Frequency Response Can be used in many AM, FM and TV-IF applications, replacing point contact devices.

Applications

- AM/FM detectors
- Ratio detectors
- FM discriminators
- TV audio detectors
- RF input probes
- TV video detectors

Features

- Lower leakage current
- Flat junction capacitance
- High mechanical strength

Average Rectified Forward Current

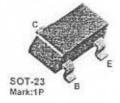
At least 1 million hours MTBF

BKC's Sigma-Bond™ plating for problem free solderability Absolute Maximum Ratings at T_{anb} = 25 °C Parameter Symbols Units Peak Inverse Voltage (Repetitive), Measured @ I, = 1 mA PIV Volts Peak Forward Surge Current Non-Repetitive, t = 1 Second 0.5 Amps FSM Peak Forward Surge Current Repetitive 200 mA

25.4 mm

(Min.)

Operating and Storage Temperatures rical Characteristics at T _{are} = 25 °C		J& STG	-55	+75	°C
Parameter	Test Conditions	Symbols	Min.	Max.	Units
Forward Voltage Drop	L = 5.0mA	V _F		1.0	Volts
	V _s = 10 Volts			30	μА
Reverse Leakage	V _R = 50 Volts	I _E		500	μА
Breakdown Voltage	Ir = 1.0 mA	PIV	65		Volts


PN2222A


MMBT2222A

PZT2222A

TO-92

EBC

NPN General Purpose Amplifier

- This device is for use as a medium power amplifier and switch requiring collector currents up to 500mA.
- · Sourced from process 19.

Absolute Maximum Ratings * T_e=25°C unless otherwise noted

Parameter	Value	Units
Collector-Emitter Voltage	40	V
Collector-Base Voltage	75	V
Emitter-Base Voltage	6.0	V
Collector Current	1.0	A
Operating and Storage Junction Temperature Range	- 55 - 150	°C
	Collector-Emitter Voltage Collector-Base Voltage Emitter-Base Voltage	Collector-Emitter Voltage 40

*These ratings are limiting values above which the serviceability of any servicenductor device may be impaired

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Charact	eristics			111000	Cinc
BV _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	I _C = 10mA, I _B = 0	40		V
BV _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 10µA, I _E = 0	75		V
BV _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10μA, I _C = 0	6.0		V
ICEX	Collector Cutoff Current	V _{CE} = 60V, V _{EB(off)} = 3.0V		10	nA
l _{cso}	Collector Cutoff Current	V _{CB} = 60V, I _E = 0 V _{CB} = 60V, I _E = 0, T _a = 125°C		0.01	µА µА
I _{EBO}	Emitter Cutoff Current	V _{EB} = 3.0V, I _C = 0		10	μА
I _{BL}	Base Cutoff Current	V _{CE} = 60V, V _{EBroth} = 3.0V		20	μА
On Characte	eristics				4500
h _{FE}	DC Current Gain	$I_C = 0.1 \text{mA}, V_{CE} = 10 \text{V}$ $I_C = 1.0 \text{mA}, V_{CE} = 10 \text{V}$ $I_C = 10 \text{mA}, V_{CE} = 10 \text{V}$ $I_C = 10 \text{mA}, V_{CE} = 10 \text{V}, T_8 = -55 ^{\circ}\text{C}$ $I_C = 150 \text{mA}, V_{CE} = 10 \text{V}^{\circ}$ $I_C = 150 \text{mA}, V_{CE} = 10 \text{V}^{\circ}$ $I_C = 500 \text{mA}, V_{CE} = 10 \text{V}^{\circ}$	35 50 75 35 100 50 40	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage *	I _C = 150mA, V _{CE} = 10V I _C = 500mA, V _{CE} = 10V		0.3 1.0	V
V _{BE(sat)}	Base-Emitter Saturation Voltage *	I _C = 150mA, V _{CE} = 10V I _C = 500mA, V _{CE} = 10V	0.6	1,2 2.0	V

Electrical Characteristics Ta=25°C unless otherwise noted (Continued)

Symbol	Parameter	Test Condition		Max.	Units
Small Signa	I Characteristics				
1 _T	Current Gain Bandwidth Product	I _C = 20mA, V _{CE} = 20V, f = 100MHz	300		MHz
Cobo	Output Capacitance	V _{CB} = 10V, I _E = 0, f = 1MHz		8.0	pF
Cibo	Input Capacitance	V _{EB} = 0.5V, I _C = 0, f = 1MHz		25	pF
rb'C _c	Collector Base Time Constant	I _C = 20mA, V _{CB} = 20V, f = 31.8MHz		150	pS
NF	Noise Figure	$I_C = 100\mu A$, $V_{CE} = 10V$, $R_S = 1.0K\Omega$, $I = 1.0KHz$		4.0	₫B
Re(h _{ie})	Real Part of Common-Emitter High Frequency Input Impedance	I _C = 20mA, V _{CE} = 20V, 1 = 300MHz		60	Ω
Switching C	haracteristics	i i i i i i i i i i i i i i i i i i i			
t _d	Delay Time	V _{CC} = 30V, V _{EB(off)} = 0.5V,		10	ns
t,	Rise Time	I _C = 150mA, I _{B1} = 15mA		25	ns
ts	Storage Time	V _{CC} = 30V, I _C = 150mA,		225	ns
t _f	Fall Time	I _{B1} = I _{B2} = 15mA		60	ns

Thermal Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter		N.A.		
	ratameter	PN2222A	*MMBT2222A	**PZT2222A	Units
PD	Total Device Dissipation Derate above 25°C	625 5.0	350 2,8	1,000 8.0	mW/°C
Rejc	Thermal Resistance, Junction to Case	83.3			°C/W
R _{BJA}	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

Spice Model

 $NPN \ (ls = 14.34f \ Xti = 3 \ Eg = 1.11 \ Vaf = 74.03 \ Bf = 255.9 \ Ne = 1.307 \ lse = 14.34 \ lkf = .2847 \ Xtb = 1.5 \ Br = 6.092 \ lsc = 0 \ lkr = 0 \ Rc = 1 \ Cjc = 7.306p \ Mjc = .3416 \ Vjc = .75 \ Fc = .5 \ Cje = 22.01p \ Mje = .377 \ Vje = .75 \ Tr = 46.91n \ Tf = 411.1p \ ltf = .6 \ Vtf = 1.7 \ Xtf = 3 \ Rb = 10)$

^{*} Device mounted on FR-4 PCB 1.5" x 1.6" x 0.06".

* Device mounted on FR-4 PCB 36mm x 15mm x 1.5mm, mounting pad for the collector lead min. 6cm².

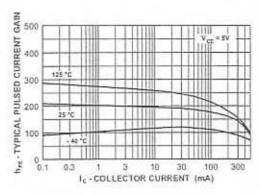


Figure 1. Typical Pulsed Current Gain vs Collector Current

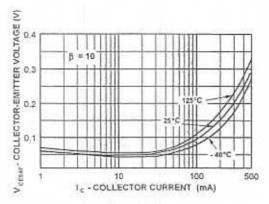


Figure 2. Collector-Emitter Saturation Voltage vs Collector Current

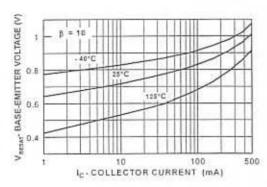


Figure 3, Base-Emitter Saturation Voltage vs Collector Current

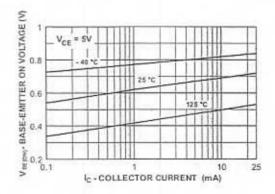


Figure 4. Base-Emitter On Voltage vs Collector Current

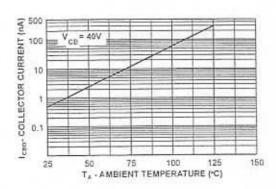


Figure 5. Collector Cutoff Current vs Ambient Temperature

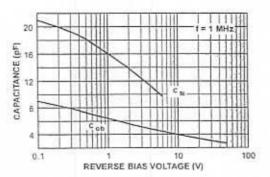


Figure 6. Emitter Transition and Output Capacitance vs Reverse Bias Voltage

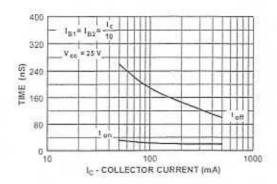


Figure 7. Turn On and Turn Off Times vs Collector Current

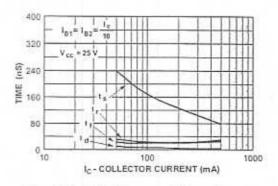


Figure 8. Switching Times vs Collector Current

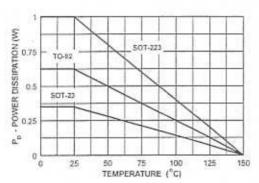


Figure 9. Power Dissipation vs Ambient Temperature

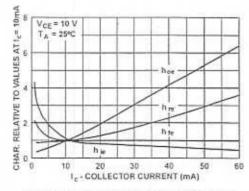


Figure 10. Common Emitter Characteristics

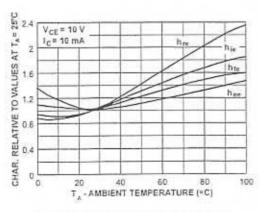


Figure 11. Common Emitter Characteristics

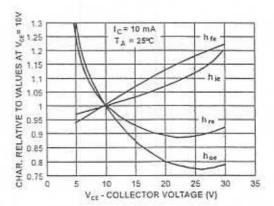


Figure 12. Common Emitter Characteristics

MC14007UB

Dual Complementary Pair Plus Inverter

The MC14007UB multi-purpose device consists of three N-channel and three P-channel enhancement mode devices packaged to provide access to each device. These versatile parts are useful in inverter circuits, pulse-shapers, linear amplifiers, high input impedance amplifiers, threshold detectors, transmission gating, and functional gating.

- · Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- · Pin-for-Pin Replacement for CD4007A or CD4007UB
- This device has 2 outputs without ESD Protection. Anti-static precautions must be taken.

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 2.)

Symbol	Parameter	Value	Unit	
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V	
V _{in} , V _{out}	in, V _{out} Input or Output Voltage Range —0.5 to V _{DD} + 0 (DC or Transient)		V	
l _{in} , l _{out}	l _{out} Input or Output Current ±10 (DC or Transient) per Pin		mA	
P _D Power Dissipation, per Package (Note 3.)		500	mW	
T _A Ambient Temperature Range -55 to +125		-55 to +125	°C	
T _{stg} Storage Temperature Range		-65 to +150		
TL	Lead Temperature (8-Second Soldering)	260	°C	

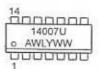
- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Denating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com



PDIP-14 P SUFFIX CASE 646 MC14007UBCP AWLYYWW

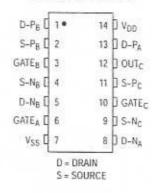
MARKING DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

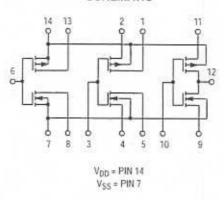
TSSOP-14 DT SUFFIX CASE 948G 14 971 907U 907U 907U 1007U

SOEIAJ-14 F SUFFIX CASE 965 MC14007U AWLYWW

A = Assembly Location


WL or L = Wafer Lot YY or Y = Year WW or W = Work Week

ORDERING INFORMATION


Device	Package	Shipping
MC14007UBCP	PDIP-14	2000/Box
MC14007UBD	SOIC-14	55/Rail
MC14007UBDR2	SOIC-14	2500/Tape & Reel
MC14007UBDT	TSSOP-14	96/Rail
MC14007UBF	SOEIAJ-14	See Note 1.
MC14007UBFEL	SOEIAJ-14	See Note 1.

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

PIN ASSIGNMENT

SCHEMATIC

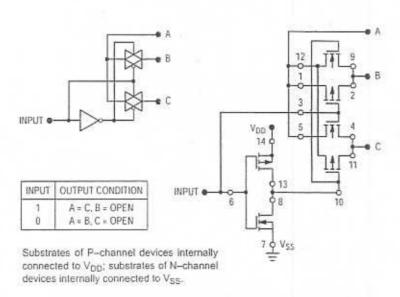


Figure 1. Typical Application: 2-Input Analog Multiplexer

MC14007UB

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

		i	VDD	- 5	5°C		25° C		12	5°C	
Characterist		Symbol	Vdc	Min	Max	Min	Тур (4.)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	*0" Level	V _{OL}	5.0 10 15	-	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	Ξ	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	*1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95	5.0 10 15	-	4.95 9.95 14.95	=	Vdc
Input Voltage (V _O = 4.5 Vdc) (V _O = 9.0 Vdc) (V _O = 13.5 Vdc)	"0" Level	V _{IL}	5.0 10 15	=	1.0 2.0 2.5	=	2.25 4.50 6.75	1.0 2.0 2.5	Ξ	1.0 2.0 2.5	Vdc
(V _O = 0.5 Vdc) (V _O = 1.0 Vdc) (V _O = 1.5 Vdc)	"1" Level	V _{IH}	5.0 10 15	4.0 8.0 12.5	-	4.0 8.0 12.5	2.75 5.50 8.25	Ξ	4.0 8.0 12.5		Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	Іон	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	=	-2.4 -0.51 -1.3 -3.4	- 5.0 - 1.0 - 2.5 - 10		-1.7 -0.36 -0.9 -2.4		mAd
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	los	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	1.0 2.5 10	Ē	0.36 0.9 2.4		mAdd
Input Current		lin	15	_	± 0.1	=	±0.00001	± 0.1	-	± 1.0	μAdo
Input Capacitance (Vin = 0)		Cin	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		IDD	5.0 10 15	-	0.25 0.5 1.0	-	0.0005 0.0010 0.0015	0.25 0.5 1.0	_	7.5 15 30	μAdo
Total Supply Current (5:) (Dynamic plus Quies Per Gate) (C _L = 50 p	cent.	IT	5.0 10 15	10		$I_T = (1,$	7 µA/kHz) f + 4 µA/kHz) f + 2 µA/kHz) f +	IDD/6			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.003.

SWITCHING CHARACTERISTICS (7.) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	V _{DD} Vdç	Min	Typ (8.)	Max	Hall
Output Rise Time $t_{TLH} = (1.2 \text{ ns/pF}) C_L + 30 \text{ ns}$ $t_{TLH} = (0.5 \text{ ns/pF}) C_L + 20 \text{ ns}$ $t_{TLH} = (0.4 \text{ ns/pF}) C_L + 15 \text{ ns}$	t _{TLH}	5.0 10 15	=	90 45 35	180 90 70	Unit
Output Fall Time I _{THL} = {1.2 ns/pF} C _L + 15 ns I _{THL} = {0.5 ns/pF} C _L + 15 ns I _{THL} = {0.4 ns/pF} C _L + 10 ns	t _{THE}	5.0 10 15		75 40 30	150 80 60	ns
Turn-Off Delay Time $t_{PLH} = (1.5 \text{ ns/pF}) C_L + 35 \text{ ns}$ $t_{PLH} = (0.2 \text{ ns/pF}) C_L + 20 \text{ ns}$ $t_{PLH} = (0.15 \text{ ns/pF}) C_L + 17.5 \text{ ns}$	lech	5.0 10 15	-	60 30 25	125 75 55	ns
Turn-On Delay Time $t_{PHL} = (1.0 \text{ ns/pF}) C_L + 10 \text{ ns}$ $t_{PHL} = (0.3 \text{ ns/pF}) C_L + 15 \text{ ns}$ $t_{PHL} = (0.2 \text{ ns/pF}) C_L + 15 \text{ ns}$	t _{РНL}	5.0 10 15		60 30 25	125 75 55	ns

The formulas given are for the typical characteristics only. Switching specifications are for device connected as an inverter.

The formulas given are for the typical characteristics only. Switching specifications are for device connected as an invertee.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

All unused inputs connected to ground.

All unused inputs connected to ground.

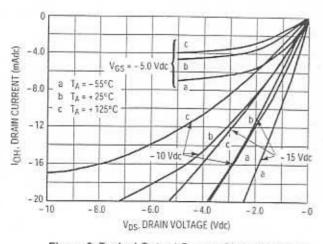


Figure 2. Typical Output Source Characteristics

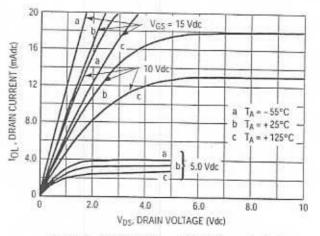
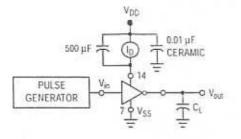



Figure 3. Typical Output Sink Characteristics

These typical curves are not guarantees, but are design aids. Caution: The maximum current rating is 10 mA per pin.

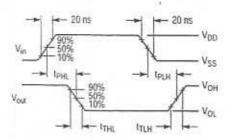
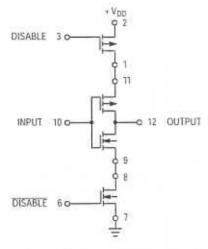
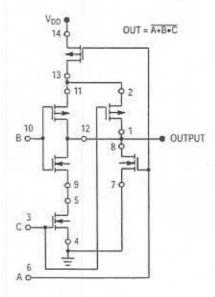



Figure 4. Switching Time and Power Dissipation Test Circuit and Waveforms


APPLICATIONS

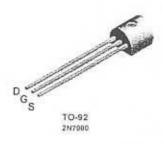
The MC14007UB dual pair plus inverter, which has access to all its elements offers a number of unique circuit applications. Figures 1, 5, and 6 are a few examples of the device flexibility.

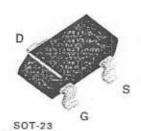
INPUT	DISABLE	OUTPUT
1	0	0
0	0	1
X	1	OPEN

Figure 5. 3-State Buffer

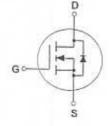
Substrates of P-channel devices internally connected to V_{DD}; Substrates of N-channel devices internally connected to V_{SS},

Figure 6. AOI Functions Using Tree Logic


2N7000 / 2N7002 / NDS7002A N-Channel Enhancement Mode Field Effect Transistor


General Description

These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 400mA DC and can deliver pulsed currents up to 2A. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.


Features

- High density cell design for low R_{psions}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- · High saturation current capability.

(TO-236AB) 2N7002/NDS7002A

Absolute Maximum Ratings T_x = 25°C unless otherwise noted

Symbol	Parameter	2N7000	2N7002	NDS7002A	Units	
Voss	Drain-Source Voltage		60			
VDGR	Drain-Gate Voltage (R _{gs} ≤ 1 MΩ)	60				
V _{oss}	Gate-Source Voltage - Continuous	±20			V	
	- Non Repetitive (tp < 50μs)	±40				
I_{D}	Maximum Drain Current - Continuous	200	115	280	mA	
	- Pulsed	500	800	1500		
Pp	Maximum Power Dissipation	400	200	300	mW	
	Derated above 25°C	3.2	1.6	2.4	mW/°C	
T_,T_170	Operating and Storage Temperature Range	-55 1	150	-65 to 150	°C	
T _i	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds		300		°C	
THERMA	L CHARACTERISTICS	1/4			-	
R _{BJA}	Thermal Resistance, Junction-to-Ambient	312,5	625	417	*C/W	

Symbol	Parameter	Conditions	Type	Min	Typ	Max	Units
OFF CHA	RACTERISTICS			111111111111111111111111111111111111111	136	- mux	Omi
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GE} = 0 \text{ V, } I_{E} = 10 \mu\text{A}$	All	60			10
Ipss	Zero Gate Voltage Drain Current	V _{ps} = 48 V, V _{qs} = 0 V	2N7000	- 00	_	1	V
		T,=125		-			μА
		V _{rs} = 60 V, V _{rs} = 0 V	2N7002	-		1	mA
			NDS7003A			1	μА
oss-	Gale - Body Leakage, Forward	V _{0s} = 15 V, V _{ps} = 0 V	2N7000			0.5	mA
		V _{gs} = 20 V, V _{ps} = 0 V	2N7002		-	10	nA
	N. C.	1	NDS7002A			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{ob} = -15 \text{ V, } V_{ob} = 0 \text{ V}$	2N7000			-10	nA
		V _{as} = -20 V, V _{os} = 0 V	2N7002 NDS7002A			-100	nΑ
ON CHAR	ACTERISTICS (Note 1)						
V _{aseni}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 1 \text{ mA}$	2N7000	0.8	2.1	3	V
		V _{pe} = V _{qs} , I _p = 250 μA	2N7002 NDS7002A	1	2.1	2.5	5
R _{osion)}	Static Drain-Source On-Resistance	V _{os} = 10 V, I _D = 500 mA	2N7000		1.2	5	Ω
		T _J =125	°C		1.9	9	5
		$V_{08} = 4.5 \text{ V}, I_0 = 75 \text{ mA}$			1.8	5.3	
		V _{GS} = 10 V, I _D = 500 mA	2N7002		1.2	7.5	
		T, =100	C		1.7	13.5	
		V _{GE} = 5.0 V, I _D = 50 mA			1.7	7.5	
		T, =100	c		2,4	13.5	
		V ₆₃ = 10 V, I _b = 500 mA	NDS7002A		1.2	2	
		T ₂ = 125°	C		2	3.5	
		$V_{GS} = 5.0 \text{ V, I}_D = 50 \text{ mA}$			1.7	3	
		T ₂ =125°	С		2.8	5	
oarow)	Drain-Source On-Voltage	$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$	2N7000		0.6	2.5	V
		$V_{08} = 4.5 \text{ V}, I_0 = 75 \text{ mA}$			0.14	0.4	
		V ₀₅ = 10 V, I _D = 500mA	2N7002	7002 0.6	0.6	3.75	
		$V_{GE} = 5.0 \text{ V}, I_{D} = 50 \text{ mA}$			0.09	1.5	
		V _{GE} = 10 V, I _D = 500mA	NDS7002A	0.6		1	
		$V_{GE} = 5.0 \text{ V}, I_D = 50 \text{ mA}$			0.09	0.15	

Symbol	Parameter	Conditions	Type	Min	Тур	Max	Units		
ON CHAI	RACTERISTICS Continued (Note 1)		1280		L OP	max	Onits		
I _{DIONO}	On-State Drain Current	V _{G5} = 4.5 V, V _{o5} = 10 V	2N7000	75	600		mA		
		V _{GS} = 10 V, V _{DS} ≥ 2 V _{DS(en)}	2N7002	500	2700		me		
	$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 \text{ V}_{DS(en)}$	NDS7002A	500	2700					
9 _{F8}	Forward Transconductance	V _{ps} = 10 V, I _p = 200 mA	2N7000	100	320		mS		
		V _{DS} ≥ 2 V _{DS(an)} , I _D = 200 mA	2N7002	80	320		mo		
		V _{DS} ≥ 2 V _{DS(en)} , I _D = 200 mA	NDS7002A	80	320				
DYNAMIC	CHARACTERISTICS	-			020				
C _{as}	Input Capacitance	V _{ps} = 25 V, V _{ss} = 0 V,	All	100	20	50	pF		
C _{ess}	Output Capacitance	f = 1.0 MHz	All		11	25	pF		
C,,,,	Reverse Transfer Capacitance		All		4	5			
L.	Turn-On Time	V ₀₀ = 15 V, R _c = 25 Ω, I _D = 500 mA, V _{os} = 10 V, R _{06N} = 25	2N7000			10	pF ns		
		$V_{DD} = 30 \text{ V}, R_L = 150 \Omega,$ $I_D = 200 \text{ mA}, V_{GB} = 10 \text{ V},$ $R_{GBH} = 25 \Omega$	2N700 NDS7002A			20			
on	Turn-Off Time	V_{oo} = 15 V, R_{L} = 25 Ω , I_{o} = 500 mA, V_{oo} = 10 V, R_{oon} = 25	2N7000			10	ns		
		$V_{DD} = 30 \text{ V}, R_L = 150 \Omega,$ $I_D = 200 \text{ mA}, V_{DS} = 10 \text{ V},$ $R_{DEN} = 25 \Omega$	2N700 NDS7002A			20			
DRAIN-SC	OURCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS							
5	Maximum Continuous Drain-Sour	ce Diode Forward Current	2N7002			115	mA		
		parameter till at manne steppe framstatt for en medical medical til det at attention before til 1971 for 2010 f	NDS7002A			280			
584	Maximum Pulsed Drain-Source D	iode Forward Current	2N7002	1		0.8	A		
			NDS7002A			1.5	50555		
se .	Drain-Source Diode Forward	V _{GS} = 0 V, I _S = 115 mA (Note 1)	2N7002		0.88	1.5	V		
	Voltage	V _{GS} = 0 V, I _S = 400 mA (Note 1)	NDS7002A		0.88	1.2			

Typical Electrical Characteristics

2N7000 / 2N7002 / NDS7002A

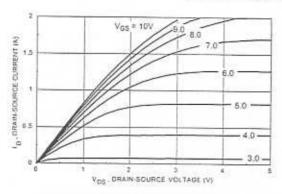


Figure 1. On-Region Characteristics

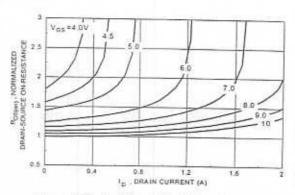


Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

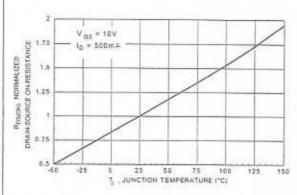


Figure 3. On-Resistance Variation with Temperature

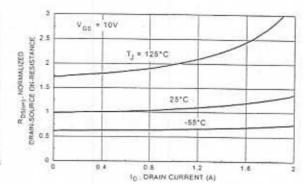


Figure 4. On-Resistance Variation with Drain Current and Temperature

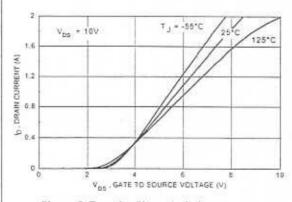


Figure 5. Transfer Characteristics

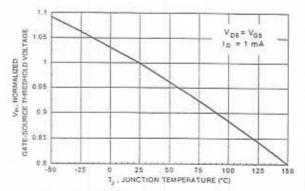


Figure 6. Gate Threshold Variation with Temperature

Typical Electrical Characteristics (continued)

2N7000 / 2N7002 /NDS7002A

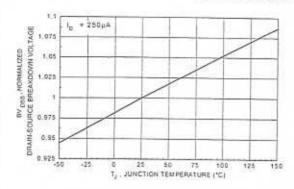


Figure 7. Breakdown Voltage Variation with Temperature

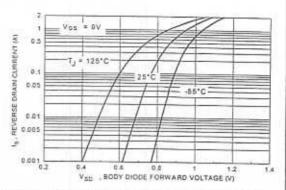


Figure 8. Body Diode Forward Voltage Variation with

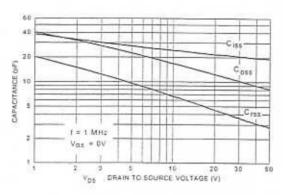


Figure 9. Capacitance Characteristics

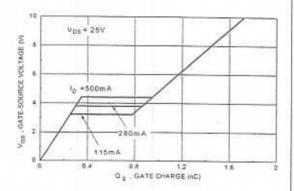


Figure 10. Gate Charge Characteristics

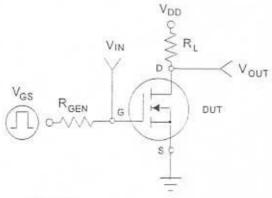


Figure 11.

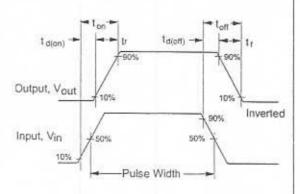
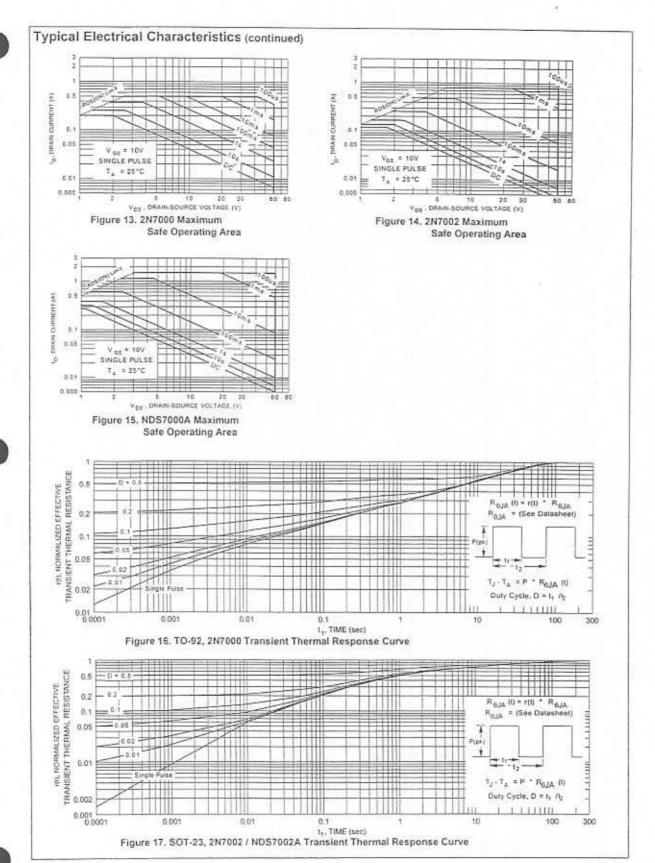



Figure 12. Switching Waveforms

