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Abstract: A low-power asynchronous compressive 
sensing scheme is proposed for radar. Power and design 
cost are optimized by combining asynchronous sampling 
and compressive sensing which decreases both the duty 
cycle of front-end circuits and the data volume of the ADC 
interface. In the signal reconstruction stage, a low-
complexity noise-robust split-projection least squares 
(SPLS) is proposed.  
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Introduction 
Radar systems using active arrays are well documented, 
with several successful implementations [1] and target 
parameter estimation techniques (size, location, and speed). 
Beamforming is typically utilized both at the transmitter, 
where multiple elements that comprise a phase-array steer 
the energy in a desired direction, and at the receiver as well, 
where a phase-array implements digital beamforming to 
select one or several angle of arrivals. This approach 
enhances the signal energy to noise ratio (SNR) and allows 
for space-time adaptive processing. Fig. 1 shows radar 
system in a vehicle-to-vehicle communication and collision 
avoidance application where low-power miniaturized 
design and real-time high-resolution target detection are 
required. 

In order to exploit the benefits of digital beamforming at 
the receiver side, such as low-cost and ease of 
implementation, high-quality analog-to-digital conversion 
(ADC) is compulsory in a radar system. Given that a high-
resolution radar requires broadband transmitting signals, 
and that the Nyquist/Shannon theorem necessitates a 
sampling rate of at least twice the signal bandwidth to 
avoid image aliasing, an excessive data exists at ADC 
interface in conventional Nyquist-sampling based 
architectures. While synthetic impulse and aperture radar 
(SIAR) may relax the sampling rate for each individual 
antenna, the aggregated data traffic of multiple orthogonal 
waveforms remains large. In the near future, the total data 
volume in high-resolution radar will rapidly grow due to 
the increasing demand for large active arrays that require a 
large number of parallel channels. This extremely high data 
traffic at the ADC not only presents challenges associated 
with the integration of a massive number of high-speed, 
high-performance, and low-power ADCs, but also in the 
high-speed data links between the analog front-end and 
digital processing unit. 

Advanced signal processing algorithms have been proposed 
to reduce the data volume in ADC [2]. Nevertheless, they 
are still confined to Nyquist sampling, stressing the power 
consumption and cost of analog-to-digital conversion. Now 
the question is, if the radar signal is compressible, can we 
achieve the compression at the analog front-end without 
compromising the signal quality? Recent breakthroughs in 
compressive sensing (CS)  gives an affirmative answer as 
any sparse signal can be perfectly reconstructed with an 
overwhelming probability from a much smaller number of 
incoherent, randomized linear projection samples relative 
to  Nyquist sampling systems [3].  

Some radar systems with CS are reported [4], [5] for data 
compression. An employed random demodulator front-end, 
which consisting of a dedicated mixer and an integrator, 
implements CS front-end in [4]. In this architecture the 
mixer must operate at or above the Nyquist rate for 
incoherent sampling, resulting in significant dynamic 
power; and the integrator also produces considerable static 
power during the charge accumulation stage. As both the 
mixer and integrator are active throughout measurement 
generation, the random demodulator approach consumes an 
excessive amount of power. In addition, the dedicated 
analog circuitry must display high linearity, as non-linear 
distortion is difficult to remove in the sparse recovery stage 
and will affect the reconstruction performance [6]. An 
alternative modulated-wave converter approach [5] also 
achieve sub-Nyquist sampling at expense of an active 
channel count of no fewer than four times the band number, 
resulting in increased overhead. Besides, challenges are 
faced in the T-periodic waveforms generation hardware. 

 
Figure 1: Radar system in a vehicle-to-vehicle communica-
tion and collision avoidance application.  



 

In this paper, we present a novel low-power asynchronous 
compressive sensing (ACS) scheme for high-resolution 
radar. The embedded CS technique allows compressed data 
volume at the ADC interface, which facilitates massive 
integration in large active array radars and relaxes the high-
speed data links’ requirements. The asynchronous sampling 
improves the energy efficiency by decreasing duty cycle of 
power-demanding circuits. Specifically, we present a 
continuous-time ternary encoding (CT-TE) scheme to 
convert signal variations to ternary timing information [7]. 
A digital random sampler (DRS) is designed to sample the 
ternary timing signal at sub-Nyquist rate, which shows low 
power, ease of integration and excellent linearity in the 
compressed sampling. We also propose a novel low-cost 
and noise-robust signal reconstruction algorithm for ACS 
front-end, called split-projection least squares (SPLS). The 
SPLS scheme is the first to translate the complicated 
nonlinear sparse reconstruction problem into a series of 
independent l2-norm problems that can be efficiently 
implemented by standard least squares (LS) estimator. It 
decreases the computation cost in signal reconstruction and 
potentially supports real-time processing of radar signals.  

Asynchronous Compressive Sensing Front-end 
Compressive Sensing (CS) is a framework that enables 
sub-Nyquist sampling and processing of sparse signals. A 
sufficiently sparse or compressible signal can be reliably 
reconstructed from a relatively small number of incoherent, 
randomized linear projection samples as compared to the 
conventional Nyquist sampling systems [3]. One unique 
advantage of the CS technique is that it integrates sampling 
and compression into one step at the analog front-end. 

CS adopts a randomized sampling kernel rather than the 
conventional delta streams. At the signal recovery stage, 
CS reconstructs the original signal by solving an 
optimization problem, 

1
min subject tox y xΦ ,                   (1) 

where Φ is an M ൈ  N measurement matrix. As is well 
known [3], problem (1) is equivalent to an l0-norm problem 
when Φ satisfies a restricted isometry property (RIP). 
Composing Φ from Gaussian and/or symmetric Bernoulli 
(±1) random processes satisfies RIP with overwhelming 
probability [3]. 

Fig. 2 shows the block diagram of the CT-TE scheme 
where a Q-bits DAC divides the signal swing U equally 
into 2Q levels. At any instant, the DAC provides a pair of 
thresholds (Vth,L, Vth,H) to the comparator, which virtually 
forms a comparison window. When input z(t) goes higher 
than Vth,H or lower than Vth,L, the comparator outputs ternary 
state “1” or “-1”, respectively; otherwise, the comparator 
outputs “0”. The following asynchronous adder and 
accumulator are level-sensitive combinational logic, which 
record signal variations and update the DAC input 
accordingly. By this way, amplitude variations in z(t) are 
modulated to ternary timing signal x(t). Hence, the CT-TE 
scheme operates in an asynchronous mode and exhibits 
excellent power efficiency in capturing impulse-radio types 
of radar transmit signals.  

The CT-TE output is captured by the DRS. Due to ternary 
state of x(t), a simplified DRS with only one adder and one 
accumulator is used for the sub-Nyquist rate sampling. The 
inner product calculation in CS scheme is implemented by 
a digital switch and an accumulator. Digital circuits also 
offer scaling advantages in advanced technology nodes.  

Split-Projection Least Squares 
In this section, we propose a low-complexity signal 
recovery algorithm to reconstruct the ternary timing signals 
from the compressed samples generated by the ACS front-
end.  

Let x א Թே for the K-sparse signal, and y א Թெ for the CS 
measurements y = Φx + w, where Φ = [φ1, φ2, φ3,…, φN], φi 
denotes the ith column of Φ, and w is Gaussian white noise 
with zero mean, i.e., w ~ ࣨሺ0,   .ଶሻߪ

Define a window Ω of length L to sweep along the columns 
of Φ. At each time, a portion of the columns is selected. 
Then, Φ is split into ሺܰ ⁄ܮ ሻ  mutually exclusive sub-
matrices, 

      1 2 /, , , N LΦ Φ Φ Φ   .                     (2) 

For the ith sub-matrix in (2), Φ can be represented by two 
M×N matrices ઴Ω

ሺ௜ሻ and ઴Ωഥ
ሺ௜ሻ according to the specific Ω = 

{S, S+1,…, S + L – 1}, where S א [1, N – L+1]. Dropping 
the index ith for convenience, 

઴ ൌ ઴Ω ൅ ઴Ωഥ  ,                                 (3) 
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Figure 2: Block diagram of the CT-TE scheme. 

 

 
Figure 3: Block diagram of the asynchronous compressive 
sensing architecture.  



 

      21 1         M S M N S LM L      
Φ 0 B 0  ,      (4) 

        1 31 1
   M LM S M N S L      

Φ B 0 B  ,    (5) 

where sub-matrices B1, B2, and B3 are formed by columns 
of Φ parameterized by Ω. Similarly, we can also segment x 
based on Ω, 

    1 2 31 1 1 1 1

T
T T T

S L N S L
x x x x

      
              .       (6) 

Combining Eqs. (3)-(6), the compressed measurement can 
be rewritten as follows, 

 2 2 1 1 3 3y x x x w   B B B   .                   (7) 

Targeting an unknown x2, the log-likelihood function is, 
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  (8) 
Here, Φ has full column rank due to the RIP constraint. 
Hence, ۰ଶ

்۰ଶ is invertible if L ൑ M. The first derivative of 
the log-likelihood function with respect to x2 is 

    2
2
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
B B

B B B    ,     (9) 

where ݔ෤ଶ = ଶݔ ൅ ሺ۰ଶ
்۰ଶሻିଵ۰ଶ

்ሺ۰ଵݔଵ ൅ ۰ଷݔଷሻ  is the 
expectation of the estimator ݔොଶ ൌ ሺ۰ଶ

்۰ଶሻିଵ۰ଶ
 The SPLS .ݕ்

reconstructs the entire signal by sweeping all the columns 
and stacking each window-based estimate along the 
signal’s dimension. If ۰ଶ

்۰ଵ and ۰ଶ
்۰ଷ are 0, or x1 and x3 are 

0, the proposed SPLS estimator is interference-free and 
becomes Minimum-Variance Unbiased (MUV) estimator, 
which has expectation equal to the true value, and the 
variance achieves the Cramér–Rao Lower Bound (CRLB). 

     
2 2

-1 12
2 2 2ˆCRLB    where T

x xx I I 


  B B，  . (10) 

The SPLS estimator can be rewritten as 

  1

2 2 2 2ˆ T Tx y


 B B B   .                         (11) 

Eq. (11) provides an estimate for a section of x, i.e., x2. The 
entire estimate is formed by stacking the section estimates 
along the signal dimension. Note that each section estimate 
is non-adaptive, and independent of each other, which is 
fundamentally different from the iteratively reweighted 
least squares (IRLS) algorithm [8]. These unique 
advantages potentially support a fully parallel hardware for 
real-time signal reconstruction. The pseudo-code for the 
SPLS scheme is shown in Algorithm 1.  
 

Algorithm 1: Split-Projection Least Squares (SPLS)
INPUT: sensing matrix Φ , compressed signal y, the 
length of window L, and the dimension of input sparse 
signal N. 
OUTPUT: the estimate of input sparse signal ݔො  
PROCEDURE:  
1. Initialize the first split by setting S = 1. The column 

indexes in the window is Ω = {S, S + 1,…, S + L－

1}, and initialize the estimate of input signal ݔො ൌ  .׎
2. while S < N  
3.      Draw sub-matrix B2 from Φ  according to Ω.  
4.      Obtain the SPLS estimate, ݔොଶ ൌ ሺ۰ଶ

்۰ଶሻିଵ۰ଶ
.ݕ்  

5.      Stack the section estimate, ݔො ൌ ሾݔො;  ݔොଶሿ. 
6.      Update the starting point of window, S = S + L. 
7. end while and return ݔො 

Amplitude detection is performed on estimate ݔො to exploit 
the ternary structure, i.e., because x {1 ,0 ,1-} א. We derive 
an appropriate threshold in the following. With Gaussian 
noise, p estimates of x, (x)1, (x)2, (x)3, … , (x)p, are normal 
with mean ݔҧ௣, and standard deviation Std(xp). The resulting 
t-value is [9],  

 Std /
p

p

x x
t

x p


   .                           (12) 

The new test statistic t follows a (p－1) degree of freedom 
Student’s t-distribution. A number Tα is chosen to have a 
100(1－α)% confidence interval, i.e. Pr(-Tα < t < Tα)=1－α, 

   Std Std
Pr 1

p p

p p

x x
x T x x T

p p


 
        
 
 

 . (13) 

Therefore, the endpoints of this confidence interval and the 
optimal thresholds TH for hypothesis testing are 

 Std p

p

x
TH x T

p
     .                      (14) 

Simulations 
A vehicle-to-vehicle monocratic pulsed radar is constructed 
based on the key parameters listed in Table I. Three 
stationary Swerling case 2 targets are simulated, located at 
3.925m, 8.155m and 19.844m. Targets have 1m2 radar 
cross section.  

We employ the ACS scheme as the CS front-end to test the 
feasibility and performance of signal recovery via the SPLS. 
Various signal recovery methods in CS area are compared, 
including Basis Pursuit [10], Orthogonal Matching Pursuit 
(OMP) [11], stage-wise Orthogonal Matching Pursuit 
(StOMP) [12], Bayesian Compressive Sensing (Bayesian 
CS) [13], and Smoothed-L0 [14].  

As a preliminary test, the ternary timing signals generated 
by the 4-bit CT-TE scheme is compressed sampled by the 
DRS module. The ternary timing signals have a dimension 

TABLE I 
RADAR SYSTEM SPECIFICATIONS 

Parameter Value 

MAX Unambiguous Range 90 meter 

Range Resolution 0.02 meter 

Transmit Pulse 
LFM: 8GHz bandwidth 
          1.25ns pulse width 

Peak Transmit Power 70mW 

Target Type Swerling-2 type 

 



 

of 10,000, and an averaged sparsity of 0.12%. For low 
signal-to-noise ratio (SNR) in radar applications, we simulate 
an SNR from 0dB to 5dB when M = 600, i.e. a normalized 
sub-Nyquist sampling ratio (SSR) of 6%. SNR is defined as 
the power ratio between signal and observation noise, 

signal

noise

P
SNR

P
     .                              (15) 

10,000 independent simulations are carried out for Monte-
Carlo simulation. Fig. 4 shows the bit error rate (BER) 
performance after amplitude detection. For the conventional 
signal recovery algorithms, the threshold is set to 0.5 due to 
their unbiased estimation. While the SPLS estimator has 
thresholds determined by (14). Fig. 4 demonstrates the SPLS 
scheme has the best BER after amplitude detection among all 
the other signal recovery schemes in low SNR region.  

Fig. 5 shows the target detection in the proposed compressed 
radar system. The solid line is the reconstructed pulse signal. 
The dashed line is the power threshold for detection using 
Shnidman's equation. As shown, three targets are detected at 

3.928m, 8.156m, and 19.847m, respectively, satisfying the 
range resolution requirement.  

Conclusion 
In this paper, we present an asynchronous compressed radar 
system with the ACS front-end. For the signal recovery 
stage, a low-complexity noise-robust SPLS is proposed. 
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Figure 4: BER of recovered signal after amplitude
detection at a normalized SSR of 6%. 10,000 independent
simulations of ternary sparse signal with dimension 10,000. 

 

Figure 5: Target detection in the proposed compressed
radar system with the ACS front-end. 
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