Forms and Forms Processing

Form and Functionality

· Forms are

· GUI interface

· interactive plots where the USER places information to be submitted

· created INSIDE the HTML code

· inside the <body> tags

· uses the <form> and </form> tag

· all GUI components are placed, labeled, set inside that <form> block

· Possible Form GUI Components

· Radio

· Text box

· one liner

· many lines

· password text

· Buttons

· Checkbox

· Designing Forms

· There are a few things to think about when designing a form

· Overall Look

· Name for each GUI component

· except SUBMIT button

· Value for each check or radio button

	[image: image1.png]Bl Edt Vew Favortes ook Hep | &

Q- © - [¢] A @] .L =

‘ddress [&] b:\gottleberlchapter_11ifigt 101.him Be
=

Bugs Bee Wee

Online Catalog Order Form

We would love to send you our newest online catalog
To do that we need to have you supply aliile
information so we can befter serve you. Please supply
the following data:

[Your name:

at do you lice to do with your bugs?
© Watch'em © Eat'em

[E-1Mail address:

RequestCatalog |

NI

Eloore [[[[y Computer

	Names and Values for each GUI component

 name
 use (value: (W and E)
 email

· Submitting data

· email

· sent as an email with all data typed in

· using the example on pg 298, the data would be sent as an email, and the message would be

name=Kermie+the+Frog&use=E&email=kfrog%40lilly.pad.net
· notice the order of data it comes is the order you create the code

· separated by “&”

· uses “names” that you gave each GUI component

· name

· name=Kermie+the+Frog

· radio

· use=E

· email

· email=kfrog%40lilly.pad.net

· may need to create a program to “parse” (SEPARATE) the data

· can use C++

· to a server for retrieval

· called CGI

· go over later

Handling Electronic Mail

· good if small bits of information to be submitted
· all submissions(data) are sent to a central email

· if you have a lot of data to submit

· use CGI

· much more complicated

· much more programming

· data is send as a stream

· will again need to parse the data to get individual pieces of data

· general <form> tag to handle email submissions

· this tag is THE BEGINNING TAG OF THE FORM BLOCK

· inside the <BODY> tag

· GUI components and regular text would be placed below this tag

· finally ended with </form>

<form action=“mailto:emailaddress@where.com” method=“post”>
Create an Introduce Yourself Page. On a piece of paper, design a page that will:

accept a user’s first and last (textboxes)

what they would like to be called (text box)
what class they are in: CSI 118 CSI 127 CSI 155 CMSC 201 CMSC 202 (radio)

Section: 1,2,3,4 (radio)

email address (textbox)

password for grade database (textbox)

Reset button

Submit button

Give a NAME for each GUI component except Reset and Submit buttons
Creating the Forms
· make sure you have it designed out first

· cannot embed one form into another

· can code for more than one form one a page

· contents of the <form> tag

· action (2 options)
· mandatory
· CGI

· Common Gateway Interface Action

· the action attribute would be a full path to a CGI script

· CGI script usually located in the cgi-bin on the web server

· parses the information needed

· written in the PERL scripting language

<form action=“http://www.where.com/cgi-bin/file.cgi” method=”get”>
· Email

· saw an example already

· method

· mandatory

· tells the browser how to send the data

· 2 options (name after the http command s that we use to communicate with the server)

· get

· sends information from HTML to server INSIDE a http: command

· uses CGI script

· Figure 11.3 on pg 302

· uses “?” to pass values from the HTML to the server

· kinda dead giveaway

· post

· required if you use the “mailto” action

· sends information from the HTML to server using a message
· could also invoke CGI script still
· enctype

· allows you to specify a different encoding format from the HTML form to the CGI script
· not needed usually

<form enctype=”text/plain” action=“mailto:emailaddress@where.com” method=“post”>

· “text/plain”

· replaces spaces with “+”

· non-alphanumeric characters are represented as their ASCII value, % (the 2 digit hex value)

· each field is separated by a “&”

· target

· directs the RETURN data from a script to a different window or frame

· not used for mailto requests

· uses “NAME” of frame in HTML

· make sure the frame has a name that matches

<form target=“frame1” action=“http://www.where.com/cgi-bin/file.cgi” method=”post”>
· style

· as idea as before for all styles

· placed in the <head> section

· this time you can specify the FORM

<! – inline example -- >

<style type=“text/css”>
form

{

border: #0000CC double 4px;

width: 80%;

}

<! – rest of the styles for the NON-FORM features -->

· name (for <form>)

· used to identify the FORM

· can be used for hyperlinks, JavaScript and applets

· intrinsic events

· LIVE events that happen while the form is being used

· trigger JavaScript Methods

GUI Components
· uses the <input> tag

· <input …… />
· all code in ONE tag for ONE Component

· need an <input> tag for each GUI component

· name (for <input/>)

· gives a name for the component

· much like a variable that will hold the data to be submitted

· required by EVERY GUI component

· make the name meaningful, not ‘a’

· try to use lowercase for names, (easier in long run)

· avoid &, and *

· no spaces

· type

· defines which type of GUI component the form will provide

· type = “text”

· used for text-entry fields or “textboxes”

· just need a name attribute along with it

· 20 characters wide is the default size

<input type="text" name="missed_bug" alt="missing bug?" title="Did we miss something?" />

· type = “password”

· stars appear as the letters are typed in the textbox

· so not to give away vital information

· type = “file”

· places a “browse” like button beside the text box to find file easily

· type = “checkbox”

· creates a checkbox

· has a checked attribute, must like the default, see highlighted below

· NOTICE

· many checkboxes can be picked

<input type="checkbox" name="favbug" value="jbug" alt="junebug" />June Bug

 <input type="checkbox" name="favbug" value="dbtl" alt="darkling" />Darkling Beetle

 <input type="checkbox" checked="checked" name="favbug" value="hbee" alt="honeybee" />Honey Bee

 <input type="checkbox" name="favbug" value="lbug" alt="ladybug" />Lady Bug

 <input type="checkbox" name="favbug" value="ewig" alt="earwig" />Ear Wig

 <input type="checkbox" name="favbug" value="vant" alt="velvetant" />Velvet Ant

· type = “radio”

· checked (for radio button)

· same NOTICE has checkbox
· only ONE radio button can be checked if grouped with the same “name”

· type = “reset”

· appears as a button

· causes the browser to reload, erase all data in the form, and reset to default values (if any)

· BE CAREFUL WHERE YOU PLACE THIS!!!

· value actually determines what is printed on the button

<input type="reset" value="Clear Selections" alt="reset">

· type = “submit”

· does what it says

· encodes data on Form, and sends using get or post methods
<input type="submit" value="Tell Us" alt="submit">
· Multiple submit controls

· there is a name attribute, so you can specify which submit will submit which material

· not a great idea, but use if you have to

· type = “button”

· much like the previous buttons

· used for JAVASCRIPT

· can be “disabled”

· data from a disabled component will NOT be sent

· size

· specifies the length of the text-entry field

· maxlength

· limits the number of characters that the user can ENTER, NOT THE SIZE OF THE BOX

· value

· TEXTBOX

· a default value is placed into the text-box.
· any data that the user places, is APPENDED or added, so they may need to delete what is already inside
· ALL OTHERS

· text that appears on or around the GUI Component

· The entry is added as soon as the HTML form loads

· tabindex

· sets a FOCUS

· focus is where the cursor/button begins on the form

· starting from 0, you can set where the focus would go after hitting the TAB button

· text AROUND a GUI component

· try using “value” attribute first (for NON-Text Boxes)

· can be created using HTML just like a normal webpage

· use
 a lot!!

· Getting to place the GUI components
· use tables!!!!

· place a component into each spot

· use td align with the tables <td align=“right”>
· right

· left

· middle

· Figure 118, pg 320

Using the previously drawn form, create it using the code below. Place all inputs. Also, have it “mailto:” mrlupoli@hotmail.com Also, please code the STYLE for the form.
	<html>

<head>

 <title> My first Form</title>

<style type=“text/css”>

form

{

… PLACE YOUR CODE HERE!!!
}

</head>

<body>

<H3> Introduce yourself </H3>

<form …. PLACE YOUR CODE HERE!!!
PLACE YOUR CODE HERE TOO!!!

</form>

</body>

</html>

Whole new GUI Component <textarea>

· uses ending tag </textarea>

· better than normal text boxes since bigger

· can set rows and columns width

· wrap

· causes the browser to break a line if it gets too close to the right margin

· there are different values you can set the wrap to

· “virtual”

· causes the text to break as normal

· sends data AS sentences no matter the breaks on the form, unless user placed
· called CrLfs (carriage return line feeds

· widely used for CGI stuff

· “physical”

· same as virtual, but where browser had to break the line, a CrLfs is placed

· off

· default setting

· no CrLfs are sent as data

Graphical Buttons

· image can act as a GUI component

· type = “image”

· uses an X, Y coordinate system to determine where the user clicked (on the image)

· name.x&name.y sent to server

· along with rest of data on form

· the data sent would show the x,y value

· that data would be processed to see where the used had pressed

Hidden data fields
· hides the code that accesses sensitive information (like an email, a file, etc…) that will be used to transmit and process the data placed in the form

· type = “hidden”

Drop-Down List Boxes

· have to be designed first before creating

· uses the <select> tag and </select> tag

· create options inside (called <options> … </options>)
<select name="goodbug">

<option selected>Vote early and often</option>

<option>Lady Bug</option>

<option>Assassin Bug</option>

<option>Lace Wing</option>

<option>Praying Mantis</option>

<option>Orchard Bee</option>

<option>Dung Beetle</option>

</select>
· order of options does matter

· when the submit button is pressed, the selected item is sent to the CGI server

· “selected” is a DEFAULT value, and is not required

· <option selected> …. </option> // then rest of options

· attributes

· size
· how many selection appear as soon as the form loads

<form action="http://www.bugsbeewee.com/cgi-bin/vote.cgi" method="post">

Which of these insects do you feel is most beneficial in YOUR garden?

<select name="goodbug" size="4">
<option selected>Vote early and often</option>

<option>Lady Bug</option>

<option>Assassin Bug</option>

<option>Lace Wing</option>

<option>Praying Mantis</option>

<option>Orchard Bee</option>

<option>Dung Beetle</option>

</select>

 <input type="submit" value="Send" alt="Select-a-bug">

</form>
· multiple

· allows multiple selections to be made

· disabled

· may disable a choose, or “gray out”

· value

· variable name for EACH option in dropbox, used to send data

· used to make processing easier

· know WHICH option was chosen
	

	<html>

<head>

<title> Bugs Bee Wee </title>

<style type="text/css">

 form { background-color: #FFFFFF;

 border-color: #0000CC;

 border-style:double;

 border-width: 4px;

 }

</style>

</head>

<body>

<form action="http://phred.dcccd.edu/cgi-bin/vote.cgi" method="post">

Which of these insects do you feel is most beneficial in YOUR garden?

<select name="goodbug">

<option selected value="no">Vote early and often</option>

<option value="lb">Lady Bug</option>

<option value="ab">Assassin Bug</option>

<option value="lw">Lace Wing</option>

<option value="pm">Praying Mantis</option>

<option value="ob">Orchard Bee</option>

<option value="db">Dung Beetle</option>
</select>

<input type="submit" value="Send" alt="Select-a-bug" />

</form>

</body>

</html>

· selected

· again default value

· optgroup tag/label tag
· groups RELATED options in a drop box!!

· Figure 11.26, pg 334

· label is required when using an optgroup

· fieldsets and legends

· fieldset builds a graphics barrier around a set of controls

· legend provides a text for the fieldset

· AN ALTERNATIVE TO A TABLE!!!
Create the example on pg 334, using the code above. Group the options into “Flying” and “Ground Based”. Email me when done.
Finish the Figure 11.27 on pg 335. Email me when done.
Processing Data Automatically (CGI)

· will learn more next chapter
· written in Perl or C

· can download scripts from the internet

· please cite or give credit if you choose this option

How CGI works (basics)

1. Browser loads the form from the HTML code
2. user fills out the form

3. user/browser submits the data on the form to the server

4. server reads the CGI calls and values being passed

5. CGI reads and interprets the data

6. CGI sends a responses to the use based on the data received

7. browser shows response

PAGE
5

