
Improved Algorithms for Path, Matching, and Packing Problems∗

Jianer Chen† Songjian Lu‡ Sing-Hoi Sze§ Fenghui Zhang‡

Abstract

Improved randomized and deterministic algorithms are pre-

sented for path, matching, and packing problems. Our

randomized algorithms are based on the divide-and-conquer

technique, and improve previous best algorithms for these

problems. For example, for the k-path problem, our ran-

domized algorithm runs in time O(4kk3.42m) and space

O(nk log k + m), improving the previous best randomized

algorithm for the problem that runs in time O(5.44kkm)

and space O(2kkn+m). To achieve improved deterministic

algorithms, we study a number of previously proposed de-

randomization schemes, and also develop a new derandom-

ization scheme. These studies result in a number of deter-

ministic algorithms: one of time O(4k+o(k)m) for the k-path

problem, one of time O(2.803kkn log2 n) for the 3-d match-

ing problem, and one of time O(43k+o(k)n) for the 3-set

packing problem. All these significantly improve previous

best algorithms for the problems.

1 Introduction

This paper develops improved exact and parameterized
algorithms for path, matching, and packing problems
that are NP-hard. This research direction has recently
drawn considerable attention [2, 5, 7, 10, 11, 13, 15, 20].

The k-path problem (given a graph G and an in-
teger k, either construct a simple path of k vertices in
G or report that no such path exists) is closely related
to a number of well-known NP-hard problems, such as
the longest path problem, the hamiltonian path
problem, and the traveling salesman problem. Ear-
lier algorithms [3, 15] for the k-path problem have run-
ning time bounded by O(2kk!nO(1)). Papadimitriou and
Yannakakis [18] studied a restricted version of the prob-
lem, the (log n)-path problem, and conjectured that
it can be solved in polynomial time. This conjecture

∗This work was supported in part by the National Science
Foundation under the Grants CCR-0311590 and CCF-0430683.
†Corresponding author, Department of Computer Science,

Texas A&M University, College Station, TX 77843, Email:
chen@cs.tamu.edu.
‡Department of Computer Science, Texas A&M University,

College Station, TX 77843, Email: {sjlu,fhzhang}@cs.tamu.edu.
§Department of Computer Science and Department of Bio-

chemistry & Biophysics, Texas A&M University, College Station,
TX 77843, Email: shsze@cs.tamu.edu.

was confirmed by Alon, Yuster, and Zwick [2], who
presented for the k-path problem randomized and de-
terministic algorithms of running time O(2O(k)nO(1)).
Very recently, the k-path problem has found applica-
tions in bioinformatics for detecting signaling pathways
in protein interaction networks [20] and for biological
subnetwork matchings [11].

Parameterized algorithms for matching and pack-
ing problems were first studied in [6], where determin-
istic algorithms of running time O(2O(k)(3k)!n log4 n)
were developed for the 3-d matching problem (given a
set S of triples and an integer k, either find a subset of k
disjoint triples in S or report that no such subset exists)
and the 3-set packing problem (given a collection C of
3-sets and an integer k, either find a sub-collection of k
disjoint 3-sets in C or report that no such sub-collection
exists). The complexity upper bounds for these prob-
lems were subsequently improved to O((5.7k)kn) [5, 10].
Koutis [13] developed randomized algorithms of time
O(10.883knO(1)) and space O(23k + n), and improved
deterministic algorithms of time O(2O(k)nO(1)) for these
problems. The deterministic upper bound was further
improved to O((12.7D)3knO(1)) (where D ≥ 10.4) by
Fellows et al. [7].

Currently, the best randomized and deterministic
algorithms for the k-path problem [2] and the match-
ing and set packing problems [7, 13] are all based on
the technique of color coding developed by Alon, Yuster,
and Zwick [2]. Take the k-path problem as an exam-
ple. We say that a simple path in a graph G is properly
colored under a coloring of the vertices in G if no two
vertices on the path are colored with the same color.
The algorithms proposed in [2] proceed as follows. Sup-
pose that there is a path P of k vertices in G, starting
from a vertex v0. To find the path P , first we color the
vertices of the graph G using k colors so that the path
P is properly colored. Then we use a (deterministic)
dynamic programming algorithm, which for each vertex
u records every possible color set C such that there is
a properly colored simple path from v0 to u that uses
exactly the colors in the set C. Since there are at most
2k different color sets, the dynamic programming algo-
rithm runs in time O(2kkm) and space O(2kkn+m).

Therefore, the critical step is how to construct a
coloring for the graph G so that the path P is prop-

erly colored. Alon, Yuster, and Zwick [2] proposed two
approaches to this problem. The first is a randomized
algorithm of running time O(ekn) that produces O(ek)
colorings for the graph G in which with high probability
at least one coloring properly colors the path P . The
second is a deterministic algorithm based on the hashing
schemes studied by Fredman, Komlos, and Szemeredi [8]
and Schmidt and Siegel [19], which constructs a set of
O(cknO(1)) colorings for the graph G in which at least
one colors the path P properly, where c is a large con-
stant. This, plus the above dynamic programming algo-
rithm, gives for the k-path problem a randomized algo-
rithm of running time O((2e)knO(1)) = O(5.44knO(1))
and space O(2kkn+m) and a deterministic algorithm of
running time O((2c)knO(1)). The current best random-
ized and deterministic algorithms for matching and
set packing [13, 7] follow the same principle: first
color the elements so that no two elements in the subset
of interest are colored with the same color, then apply
a deterministic algorithm (e.g., dynamic programming)
on the set of colored elements to search for the subset.

This method is of great theoretical importance. In
particular, it confirms Papadimitriou and Yannakakis’s
conjecture that the (log n)-path problem can be solved
in polynomial time. On the other hand, both the time
and space complexity of the algorithms are quite high.
From a practical point of view, it is necessary to further
significantly improve the running time of the algorithms
to make them practically useful for moderate values of
k. Moreover, the space complexity of all the randomized
algorithms described above for path, matching, and
packing is exponential in k, which is also remarkable.

In this paper, we develop improved randomized and
deterministic algorithms for the path, matching, and
packing problems. Our first constribution is a random-
ized divide-and-conquer method. Roughly speaking,
suppose we are looking for a subset Sk of k elements in
a large set S. We first randomly partition the set S into
two parts, then recursively look for a subset of k/2 ele-
ments in each part. This simple method leads directly
to improved randomized algorithms. For the k-path
problem, this new method gives a randomized algorithm
of time O(4kk3.42m) and space O(nk log k + m),1 im-
proving the previous best randomized algorithm for the
problem of time O(5.44kkm) and space O(2kkn + m)
[2]. For the 3-d matching and 3-set packing prob-
lems, the method gives randomized algorithms of time
O(2.523kn) and space O(nk log k + m), improving the
previous best randomized algorithms for the problems
of time O(10.883knO(1)) and space O(23k +m) [13].

1We heard recently that Kneis et al. [12] have independently
developed a similar randomized algorithm for the k-path problem,
with running time similar to that of ours presented in this paper.

To achieve improved deterministic algorithms, we
study a number of previously proposed derandomization
schemes, including the (n, k)-universal sets studied in
[16], and the (n, k)-families of perfect hashing functions
studied in [2, 16]. Using the derandomization scheme
based on (n, k)-universal sets, we derive a deterministic
algorithm of running time O(4k+o(k)m) for the k-path
problem, and a deterministic algorithm of running time
O(43k+o(k)n) for the 3-set packing problem. We also
develop a new (n, k)-family of perfect hashing functions,
which, plus other techniques, gives a deterministic
algorithm of running time O(2.803kkn log2 n) for the 3-
d matching problem. All these results significantly
improve previous best algorithms for the problems.

The paper is organized as follows. Section 2
presents improved randomized and deterministic algo-
rithms based on the divide-and-conquer technique for
the path, matching, and packing problems. In sec-
tion 3, we develop a new family of perfect hashing func-
tions that can be constructed more efficiently in terms
of both time and space complexity. Using this new fam-
ily, section 4 develops a further improved deterministic
algorithm for the 3-d matching problem.

2 Improved algorithms via divide-and-conquer

We start with a group of new randomized algorithms
based on the divide-and-conquer method. These algo-
rithms are improvements over previous randomized al-
gorithms for a number of path, matching, and pack-
ing problems. To make our discussion more specific,
we will describe the method in detail based on the k-
path problem. We then explain briefly how the method
is applied to matching and packing problems. Fi-
nally, we discuss how these algorithms are derandom-
ized to achieve improved deterministic algorithms for
the problems. Throughout this paper, we will denote
by e = 2.718 · · · the base of the natural logarithm.

2.1 The randomized algorithms The randomized
algorithm for k-path is given in Figure 1. A simple
path in a graph G is a (u, k)-path if it contains exactly
k vertices and if one end of the path is u. In particular,
a (u, 1)-path consists of a single vertex u. When the
vertex u is irrelevant, a (u, k)-path will be simply called
a k-path. Our algorithm find-paths(P ′, G′, k) on a set
P ′ of k′-paths and a subgraph G′ in G (where no vertex
in G′ is on any path in P ′) returns a set P of paths, each
is a concatenation of a k′-path in P ′ and a k-path in G′

(if no such paths exist, the algorithm returns an empty
set). In particular, the algorithm find-paths(∅, G′, k)
returns a set of k-paths in the graph G′.

Lemma 2.1. For all k ≥ 2, dlog ke = dlog(dk2 e)e+ 1.

find-paths(P ′, G′, k)
input: P ′ a set of k′-paths and G′ a subgraph in G;

G′ contains no vertex in P ′, an integer k ≥ 1;
output: a set P of paths, each is a concatenation of a

k′-path in P ′ and a k-path in G′;

1. P = ∅;
2. if k = 1 then

if P ′ = ∅ then return all 1-paths in G′;
else for each (u, k′)-path p in P ′ and each edge

(u,w) in G, where w is in G′ do
concatenate p and w to make a

(w, k′ + 1)-path p′;
add p′ to P if no (w, k′ + 1)-path is in P ;

return P ;
3. loop 2.51 · 2k times do
3.1. randomly partition the vertices in G′ into two

parts VL and VR;
3.2. let GL and GR be the subgraphs induced by VL

and VR, respectively;
3.3. PL = find-paths(P ′, GL, dk/2e);
3.4. if PL 6= ∅ then
3.5. PR = find-paths(PL, GR, k − dk/2e);
3.6. for each (u, k′ + k)-path p in PR do
3.7. add p to P if no (u, k′ + k)-path is in P ;
4. return P .

Figure 1: A divide-and-conquer algorithm for k-path

Theorem 2.1. On a graph G = (V,E) with n vertices
and m edges and an integer k ≥ 1, if G contains a (u, k)-
path for a vertex u, then with probability larger than 1−
1/e > 0.632, the set P returned by the algorithm find-
paths(∅, G, k) contains a (u, k)-path. The algorithm
find-paths(∅, G, k) runs in time O(4kk3.42m) and in
space O(nk log k +m).

Proof. To prove the first part, we prove the following
claims using induction on k:

1. If P ′ = ∅ and G′ has a (u, k)-path, then with
probability larger than 1− 1/e, the set P returned
by the algorithm find-paths(P ′, G′, k) includes a
(u, k)-path.

2. If P ′ 6= ∅ and G′ has a (u, k)-path whose other
end is connected to an end vertex of a path in P ′,
then with probability larger than 1 − 1/e, the set
P returned by the algorithm find-paths(P ′, G′, k)
contains a (u, k′ + k)-path.

The claims are obviously true for k = 1. Let k > 1.
First consider the case when P ′ = ∅. Suppose that

[u1, u2, . . . , uk1 , uk1+1, . . . , uk]

is a (uk, k)-path in G′, where k1 = dk/2e. Then with
probability 1/2k, step 3.1 of the algorithm puts vertices
u1, u2, . . . , uk1 into VL, and vertices uk1+1, . . . , uk into
VR. If this is the case, then the graph GL contains the
(uk1 , k1)-path [u1, . . . , uk1], and the graph GR contains

the (uk, k − k1)-path [uk1+1, . . . , uk]. By the inductive
hypothesis, with probability larger than 1 − 1/e, PL
obtained from step 3.3 includes a (uk1 , k1)-path. The
(uk, k−k1)-path [uk1+1, . . . , uk] in GR has its other end
uk1+1 connected to the (uk1 , k1)-path in PL. Therefore
with probability larger than 1−1/e, PR obtained in step
3.5 contains a path of length k1 +(k−k1) = k that ends
with uk, i.e., a (uk, k)-path. Therefore in each loop of
step 3, the probability ρ that a (uk, k)-path is added to
the set P is larger than

(1− 1/e)2

2k
>

0.6322
2k

>
1

2.51 · 2k .

In the case when P ′ 6= ∅, we follow the same
argument as before except that we require that the
(uk, k)-path in G′ has its other end connected to the
end of a k′-path in P ′. So PL contains a (uk1 , k

′ + k1)-
path p that is a concatenation of a k′-path in P ′ and
a k1-path in GL, and PR contains a (uk, k′ + k)-path
that is a concatenation of a (k′ + k1)-path in PL and a
(k − k1)-path in GR.

Since step 3 of the algorithm loops 2.51 · 2k times,
the overall probability that the algorithm returns a set
of paths that contains a (uk, k)-path (when P ′ = ∅) or
a (uk, k′ + k)-path (when P ′ 6= ∅) is

1− (1− ρ)2.51·2k > 1−
(

1− 1
2.51 · 2k

)2.51·2k

> 1− 1
e
.

This proves the first part of the theorem.
To analyze the time complexity, let T (k) be the

running time of the algorithm find-paths(P ′, G′, k).
Without loss of generality, we assume that m ≥ n. From
the algorithm, we get the following recurrence relation:

T (k) = 2.51 · 2k[cm+ T (dk/2e) + T (k − dk/2e)],
where c > 0 is a constant. We claim that for all k > 0,

T (k) ≤ c · (10.7)dlog ke22km,(2.1)

and we prove it by induction on k. Obviously T (1) ≤ cm
if c is sufficiently large, so inequality (2.1) holds for
k = 1. Let k > 1, then

T (k) = 2.51 · 2k (cm+ T (dk/2e) + T (k − dk/2e))
≤ 2.51 · 2k (cm+ 2c · (10.7)dlogdk/2eem22dk/2e)

≤ 2.51 · 2k (cm+ 2c
10.7 · (10.7)dlogdk/2ee+1m2k+1

)

= c · (10.7)dlog ke22km · 2.51
(

1
10.7dlog ke2k + 4

10.7

)

≤ c · (10.7)dlog ke22km · 2.51
(

1
10.7·4 + 4

10.7

)

< c · (10.7)dlog ke22km.

Here in the second step of the above derivation, we have
used k − dk/2e ≤ dk/2e. In the third step, we have

used 2dk/2e ≤ k + 1, and in the fourth step we have
used Lemma 2.1. Thus the running time T (k) of the
algorithm find-paths(∅, G, k) is O((10.7)dlog ke22km) =
O(4kk3.42m).

In terms of the space complexity, each recursive call
to the algorithm find-paths uses O(nk) space (mainly
for the sets PL, PR, and P). Since on a graph G and
an integer k, the recursive depth of the algorithm is
O(log k), we conclude that the space complexity of the
algorithm find-paths(∅, G, k) is O(nk log k +m).

To obtain a randomized algorithm solving the k-
path problem with a required error bound, we simply
run the algorithm in Theorem 2.1 sufficiently many
times. For example, to achieve an error bound of 0.0001,
we can run the algorithm in Theorem 2.1 t times, where
t satisfies (1/e)t ≤ 0.0001 (e.g., t = 10).

Corollary 2.1. There is a randomized algorithm of
time O(4kk3.42m) and space O(nk log k+m) that solves
the k-path problem with arbitrarily small error bound.

Remark 1. Recently, Kneis et al. [12] have in-
dependently developed a similar randomized algorithm
for the k-path problem. The running time of their al-
gorithm is similar to that in Corollary 2.1.

Remark 2. It seems that we have to be more
careful when we analyze an exponential time algorithm
based on the divide-and-conquer method. Certain
common techniques from traditional algorithm analysis
do not seem to be directly applicable. For example,
we cannot simply assume that the parameter k is a
power of 2 since the extension from this special case
to the case for general k does not seem to give the
same complexity bound. In fact, when k is a power
of 2, it is quite trivial to verify (by induction) that
T (k) ≤ O(4kk2.52m). However, it seems not easy to
extend this bound to the case for general k.

We compare our algorithm in Corollary 2.1 with
previously known algorithms for the k-path problem.
To our knowledge, there are two kinds of randomized
algorithms for the k-path problem. The first kind is
based on random permutations of vertices followed by
searching in a directed acyclic graph [2, 11]. The algo-
rithm runs in time O(mk!) and space O(m). The second
kind, proposed by Alon, Yuster, and Zwick [2], is based
on random coloring of vertices followed by dynamic pro-
gramming to search for a k-path in the colored graph.
The algorithm runs in time O((2e)kkm) = O(5.44kkm)
and space O(2kkn+m) (the space is mainly for the dy-
namic programming phase). Compared to these algo-
rithms, our algorithm has a significantly improved run-
ning time and uses polynomial space. In fact, if we
only need to know whether the graph has a k-path, a

slight modification of our algorithm can further reduce
the space complexity to O(n log k +m).

The above randomized divide-and-conquer method
can also be used to develop improved algorithms for
matching and packing problems. Consider the 3-d
matching problem (given a set S of triples and an
integer k, either find a subset Sk of k disjoint triples
or report that no such subset exists). In the case when
such a subset Sk exists, let Ak be the set of 3k symbols
in the triples in Sk. With probability

(
k
k/2

)
/23k =

O(1/(22k
√
k)), we can partition the symbols in Ak into

two subsets A′k and A′′k such that A′k contains 3k/2
symbols in k/2 triples in Sk and A′′k contains 3k/2
symbols in the other k/2 triples in Sk. The set S of
triples can be partitioned into two subsets S′ and S′′

in terms of A′k and A′′k , and a subset of k/2 triples is
searched recursively in each of the sets S′ and S′′. An
analysis similar to that in Theorem 2.1 shows that this
algorithm runs in time O(42k+o(k)n) = O(2.523kn) and
space O(nk log k + m) and finds the subset of k triples
with high probability. It is straightforward to modify
this approach to obtain an algorithm of the same time
and space complexity for the 3-set packing problem
(given a collection of 3-sets and an integer k, either find
a sub-collection of k disjoint 3-sets or report that no
such sub-collection exists).

Theorem 2.2. The 3-d matching and 3-set pack-
ing problems can be solved by randomized algorithms in
time O(2.523kn) and space O(nk log k +m).

The previous best randomized algorithms for the
problems [13] take time O(10.883knO(1)) and space
O(23k +m), where the space is exponential in k.

2.2 Derandomization We discuss how the random-
ized algorithms presented in the previous subsection are
derandomized. Kneis et al. [12] suggested a derandom-
ization process for their randomized algorithm for the
k-path problem (which is essentially the same as our
algorithm given in Figure 1) based on the construction
of almost k-wise independent random variables devel-
oped in [1]. Their derandomization process results in
a deterministic algorithm of running time O(16knO(1))
for the k-path problem. In this subsection, we describe
an improved derandomization process based on the con-
struction of (n, k)-universal sets studied in [16].

Let s = s1s2 · · · sn be an n-bit binary string, and let
π be a subset of k elements in the index set {1, 2, . . . , n}.
We will denote by π(s) the k-bit binary string obtained
from s by deleting all bits si where i 6∈ π.

Definition 2.1. An (n, k)-universal set T is a set of
n-bit binary strings such that for every subset π of k

elements in {1, 2, . . . , n}, the collection {π(s) | s ∈ T}
contains all 2k k-bit binary strings. The size of the
(n, k)-universal set T is the number of strings in T .

Proposition 2.1. ([16]) There is a deterministic al-
gorithm of running time O(2kkO(log k)n log n) that con-
structs an (n, k)-universal set of size 2kkO(log k) log n.

We explain how Proposition 2.1 is used to achieve
a deterministic algorithm for the k-path problem.
Consider the algorithm find-path(P ′, G′, k) in Fig-
ure 1. Suppose that the graph G′ has n vertices v1,
. . ., vn. First, we construct an (n, k)-universal set
T of size 2kkO(log k) log n (this can be done in time
O(2kkO(log k)n logn)). Then we call the algorithm find-
path(P ′, G′, k) but replace step 3 and step 3.1 in the
algorithm by the following steps:

3. for each n-bit binary string s = s1s2 · · · sn in T do

3.1. let VL = {vi | si = 0} and VR = {vi | si = 1};

Note that this replacement makes the algorithm find-
path(P ′, G′, k) become deterministic. Moreover, sup-
pose that there is a k-path P in the graph G′. Then,
since T is an (n, k)-universal set, one s of the n-bit bi-
nary strings in T picked in step 3 in the algorithm will
make step 3.1 to include the first dk/2e vertices on P in
the set VL and the last k − dk/2e vertices on P in the
set VR. Now, the reasoning goes very similar to that of
Theorem 2.1. Using induction on k, we can prove that
this deterministic algorithm correctly returns a k-path
if such a path exists in the input graph. Finally, com-
pletely similarly to that in Theorem 2.1, we can derive
that the running time of this deterministic algorithm is
bounded by O(4k+o(k)m).

Theorem 2.3. There is an O(4k+o(k)m) time deter-
ministic algorithm that solves the k-path problem.

Similarly, using (n, 3k)-universal sets, we can de-
randomize the randomized algorithms for the 3d-
matching and 3-set packing problems.

Theorem 2.4. There are deterministic algorithms of
running time O(43k+o(k)n) that solve the 3d-matching
and 3-set packing problems.

3 On perfect hashing function families

To obtain further improved deterministic algorithms for
matching and packing problems, we investigate the
method of color coding proposed by Alon, Yuster, and
Zwick [2] and develop a new (n, k)-family of perfect
hashing functions. The previous best explicit construc-
tion for perfect hashing function families was suggested
in [2] based on the construction of [19], which gives an

(n, k)-family of perfect hashing functions of size at least
Ω(11k log n) (this bound was not made explicit in the
paper). Another construction of (n, k)-families of per-
fect hashing functions of size O(ekkO(log k) logn) was
described in [16], which depends on the existence of a
probability space that we were not able to verify. More-
over, it seems that the construction given in [16] requires
super-polynomial space.

We will present in this section a new (n, k)-family of
perfect hashing functions of size O(6.4k log2 n). More-
over, the representation of our (n, k)-family of perfect
hashing functions only requires polynomial space. This
new (n, k)-family of perfect hashing functions directly
induces improved algorithms for a number of match-
ing and packing problems.

3.1 Preliminaries Let S be a set and let W be
a subset of S. A function f on S is injective from
W if for any two different elements x and y in W ,
f(x) 6= f(y). For each integer m, denote by Zm the set
{0, 1, . . . ,m−1}. In particular, if m is a prime number,
then Zm is a field under the addition and multiplication
modulo m.

Definition 3.1. A k-coloring of the set Zn is a func-
tion from Zn to Zk. A collection F of k-colorings of Zn
is an (n, k)-family of perfect hashing functions if for any
subset W of k elements in Zn, there is a k-coloring in
F that is injective from W . The size of the family F is
the number of k-colorings in F .

An (n, k)-family of perfect hashing functions can
be constructed from a (k2, k)-family of perfect hashing
functions, as described in the following, which was
implicitly proved in [8].

Theorem 3.1. ([8]) If there is a (k2, k)-family of per-
fect hashing functions of size r, then there is an (n, k)-
family of perfect hashing functions of size bounded by
k4r log2 n.

If we denote by τ(n, k) the minimum size of an
(n, k)-family of perfect hashing functions, then from
Theorem 3.1, we get immediately:

Corollary 3.1. τ(n, k) ≤ τ(k2, k) · k4 log2 n.

Therefore, the values τ(n, k) and τ(k2, k) differ by
at most a factor of k4 log2 n. This “kernelization” result
enables us to concentrate on the study of the case where
n = k2. Moreover, we should point out that a lower
bound Ω(ek logn/

√
k) for the value τ(n, k) has also been

derived [17].

3.2 Perfect hashing functions for small k We
first study the properties of (n, k)-family of perfect
hashing functions, from which we will be able to derive
upper bounds for the value τ(n, k) for small n and
k. The proofs of the results in this subsection will be
presented in the full version of the paper.

Lemma 3.1. For any integers n and k, n ≥ k, there is
an (n, k)-family of perfect hashing functions of size

(
n
k

)
.

For the case k ≤ 2 and k = n, we have

Lemma 3.2. For any n ≥ 2, τ(n, 0) ≤ 1, τ(n, 1) = 1,
τ(n, n) = 1, and τ(n, 2) ≤ dlog ne.

For a general k, we have the following result.

Lemma 3.3. If n = n1 + · · ·+ nr, where nj ≥ 1 for all
1 ≤ j ≤ r, then

τ(n, k) ≤
∑k1+···+kr=k

0≤k1≤n1,...,0≤kr≤nr

(
τ(|kj≤1|,|kj=1|)

(|kj≤1|
|kj=1|)

∏
kj≥2τ(nj , kj)

)
,

where |kj ≤ 1| and |kj = 1| denote the numbers of kj’s
in the list [k1, . . . , kr] such that kj ≤ 1 and kj = 1,
respectively.

By Lemma 3.2 and Lemma 3.3, for small values of n
and k, we can derive specific upper bounds τ0(n, k) for
the values τ(n, k) and construct (n, k)-families of perfect
hashing functions. We first did this for very small values
of n and k. Then using a computer program and based
on Lemma 3.3, we also did this for larger values of n and
k. The values τ0(n, k) for these small n and k enabled
us to prove the following lemma.

Lemma 3.4. There is a collection of (k(k−1), k)-family
of perfect hashing functions Fk(k−1) of size τ0(k(k −
1), k), for k ≥ 2, such that for any list of non-negative
integers [k1, k2, . . . , kr] satisfying k1 + · · ·+ kr = k and∑r
j=1 kj(kj − 1) ≤ 4k, the following inequality holds:∏
kj≥2 τ0(kj(kj − 1), kj) ≤ 2.4142k.

3.3 A new family of perfect hashing functions
We first consider the case where k is divisible by 4
and let k′ = k/4 − 1. The case for general k will
be handled after the discussion for this special case.
According to Theorem 3.1, we can concentrate on the
case n = k2. Therefore, throughout the rest of this
section, we assume that n = k2.

Let p be a prime number satisfying n ≤ p < 2n
(such a prime number exists by Bertrand’s Conjecture
[9]). The prime number p can be obtained in time

O(n
√
n) = O(k2) using the straightforward primality

testing algorithm.
We first present a k-coloring algorithm for the set

Zn. Our k-coloring algorithm is associated with a set of
parameters satisfying the following properties:

C1 A pair of integers (a, b), where 0 < a ≤ p − 1,
0 ≤ b ≤ p− 1;

C2 A list C = [c0, c1, . . . , ck′] of non-negative integers,
where k′ = k/4−1,

∑k′

j=0 cj = k, and
∑k′

j=0 cj(cj−
1) ≤ 4k. Let C>1 be the sublist of C by removing
all cj ≤ 1;

C3 A list L = [(a1, b1), (a2, b2), . . . , (ar, br)] of pairs of
integers, where 0 < ai ≤ p− 1, 0 ≤ bi ≤ p− 1, and
r ≤ log |C>1|;

C4 A mapping from the elements in the list C>1 to
the elements in the list L such that at least half
of the cj ’s in C>1 are mapped to (a1, b1), at least
half of the cj ’s that are not mapped to (a1, b1) are
mapped to (a2, b2), at least half of the cj ’s that are
not mapped to (a1, b1) and (a2, b2) are mapped to
(a3, b3), and so on.

C5 A list of colorings [Fc0 , Fc1 , . . . , Fck′], where for
cj > 1, Fcj is a cj-coloring of the set Zcj(cj−1) taken
from the (cj(cj − 1), cj)-family Fcj(cj−1) of perfect
hashing functions given in Lemma 3.4 (for cj ≤ 1,
Fcj is irrelevant).

We also define a function as follows. For three given
integers s, a, b, where 1 < s < n, 0 < a ≤ p − 1, and
0 ≤ b ≤ p − 1, define a function φa,b,s from the set Zn
to the set Zs by

φa,b,s(x) = ((ax+ b) mod p) mod s.(3.2)

Our k-coloring algorithm is given in Figure 2. Since∑k′

j=0 cj = k, it is easy to verify that the algorithm
Coloring produces a k-coloring for the set Zn.

For each different set of parameters satisfying con-
ditions C1–C5, the algorithm Coloring produces a k-
coloring for the set Zn. We first consider the number
of different combinations of these parameters satisfying
conditions C1–C5.

Theorem 3.2. The total number of combinations of
the parameters satisfying conditions C1–C5 is bounded
by O(6.383kk4 log k−4), and these combinations can be
enumerated systematically.

Proof. There are p2 = O(n2) = O(k4) pairs of integers
(a, b) satisfying condition C1.

Coloring
input: parameters as specified in C1–C5;
output: a k-coloring of the set Zn;

1. for j = 0 to k′ = k/4− 1 do
Uj = {x | x ∈ Zn, φa,b,k/4(x) = j};

2. for each Uj such that cj > 1, suppose that cj is
mapped to (ai, bi) do

for t = 0 to cj(cj − 1)− 1 do
Uj,t = {x | x ∈ Uj , φai,bi,cj(cj−1)(x) = t};
create cj new colors τj,0, τj,1, . . . , τj,cj−1;
assign all elements in Uj,t with color τj,s if the
cj-coloring Fcj for Zcj(cj−1) assigns color s to
the element t;

3. for each cj = 1, create a new color τj and assign all
elements in Uj the color τj ;

4. assign all elements in
⋃
cj=0

Uj arbitrarily using the

colors created in steps 2–3.

Figure 2: A coloring algorithm

Consider condition C2. We represent each list
C = [c0, . . . , ck′] satisfying condition C2 using a single
binary string BC of length 5k/4− 1 in which there are
exactly k/4− 1 0-bits. The k/4− 1 0-bits in BC divide
BC into k/4 “segments” such that the jth segment
contains exactly cj 1-bits (in particular, the segment
between two consecutive 0’s in BC corresponds to a
cj = 0). It is easy to verify that any list C satisfying
condition C2 is uniquely represented by such a binary
string BC . Note that the number of binary strings of
length 5k/4 − 1 with exactly k/4 − 1 0-bits is equal to(

5k/4−1
k/4−1

) ≤ 1.8692k. We conclude that the total number
of different lists satisfying condition C2 is bounded by
1.8692k. Note that all these lists can be systematically
enumerated based on the binary string representation
described above.

Since r ≤ log(|C>1|) ≤ log(k/4) = log k − 2, there
are at most log k − 2 pairs in each list L satisfying
condition C3. By condition C3, there are p2 = O(k4)
possible pairs for each (ai, bi). Therefore, the total
number of lists L satisfying condition C3 is bounded
by O(k4 log k−8).

Now we discuss when a list C = [c0, . . . , ck′] satis-
fying condition C2 and a list L = [(a1, b1), . . . , (ar, br)]
satisfying condition C3 are given, how many different
mappings from C>1 to L can there be that satisfy con-
dition C4. Let q = |C>1| ≤ k/4. We use a binary
string A>1 to represent a mapping from C>1 to L. The
binary string A>1 has q 0-bits, which divide A>1 into
q segments, each starting with a 0-bit. For each j, the
jth segment of the form 01i−1 in A>1 represents the
mapping from the jth element in C>1 to the integer
pair (ai, bi) in L. By Condition C4, at least half of the
segments in A>1 have no 1-bit, at least half of the re-
maining segments in A>1 have the form 01, and at least
half of the remaining segments that are not of the form

0 or 01 in A>1 have the form 011, and so on. Therefore,
the length of the binary string A>1 is bounded by

q

2
+ 2

q

22
+ 3

q

23
+ · · · < 2q ≤ k

2
.

In consequence, the number of different mappings from
C>1 to L satisfying condition C4 is bounded by 2k/2 =
1.4143k.

Finally, for each cj > 1, the cj-coloring Fcj in the
list satisfying condition C5 is from the (cj(cj − 1), cj)-
family Fcj(cj−1) of perfect hashing functions given in
Lemma 3.4, whose size is τ0(cj(cj − 1), cj). The total
number of lists of colorings satisfying condition C5 is
bounded by

∏
cj≥2 τ0(cj(cj − 1), cj). By condition C2,

the numbers cj satisfy
∑k′

j=0 cj = k and
∑k′

j=0 cj(cj −
1) ≤ 4k. Thus by Lemma 3.4,

∏

cj≥2

τ0(cj(cj − 1), cj) ≤ 2.4142k.

Combining all these results, we conclude that the total
number of combinations of the parameters satisfying
conditions C1–C5 is bounded by

O(k4) · 1.8692k ·O(k4 log k−8) · 1.4143k · 2.4142k

= O(6.383kk4 log k−4).

Moreover, from the above discussion, these combina-
tions can be enumerated systematically.

Corollary 3.2. Running the algorithm Coloring in
Figure 2 over all possible parameters satisfying condi-
tions C1–C5 gives a collection F of O(6.383kk4 log k−4)
k-colorings for the set Zn.

We show that the collection F of k-colorings in
Corollary 3.2 makes an (n, k)-family of perfect hashing
functions.

Consider the following two sets of ordered pairs of
integers:

F1(p) = {(a, b) | 0 < a ≤ p− 1 and 0 ≤ b ≤ p− 1},
F2(p) = {(r, q) | 0 ≤ r, q ≤ p− 1 and r 6= q}.

Fix two distinct integers x and y, 0 ≤ x, y ≤ p − 1, we
construct a mapping as follows:

π : (a, b) −→ ((ax+ b) mod p, (ay + b) mod p).

Lemma 3.5. For any two integers x and y such that
0 ≤ x, y ≤ p− 1 and x 6= y, the mapping π is a one-to-
one mapping from F1(p) to F2(p).

For a given integer s, 1 < s < n, and an ordered
pair (a, b) in F1(p), recall the function φa,b,s defined in

(3.2) from the set Zn to the set Zs. For each subset
W of the set Zn and for each integer j, 0 ≤ j ≤ s − 1,
denote by B(a, b, s,W, j) the number of integers x in W
such that φa,b,s(x) = j. We have the following lemma.

Lemma 3.6. Suppose p mod s = h. Then for every
subset W of k elements in Zn, we have

∑
(a,b)∈F1(p)

∑s−1
j=0

(
B(a,b,s,W,j)

2

)

= k(k−1)(p−h)(p−(s−h))
2s .(3.3)

Corollary 3.3. Let 1 < s < n. For each subset W
of k elements in Zn, there is an ordered pair (a, b) in
F1(p) such that

s−1∑

j=0

(
B(a, b, s,W, j)

2

)
<
k(k − 1)

2s
.

We remark that Corollary 3.3 gives a significant im-
provement over the bound given by Fredman, Komlos,
and Szemeredi [8], which was used to implement the
(n, k)-family of perfect hashing functions suggested by
Alon, Yuster, and Zwick [2]. In particular, the bound
derived in [8] uses a hashing function ψa,s defined by

ψa,s(x) = (ax mod p) mod s,

and the corresponding bound is k2/s. On the other
hand, our bound is derived based on the hashing
function φa,b,s. The hashing function φa,b,s has been
studied by Carter and Wegman for other purposes
[4]. Roughly speaking, the value in (3.3) measures the
collision (i.e., the squared sum of “radii”) of a hashing
function. It has been shown [4] that no hashing function
can significantly improve Corollary 3.3. We will show
that the bound improvement from k2/s to k(k−1)/(2s)
will induce a very significant improvement on the upper
bound for the size τ(n, k) of (n, k)-families of hashing
functions.

Now we are ready to show that the collection F
in Corollary 3.2 makes an (n, k)-familiy of hashing
functions. For this, we need to show that for every
subset W of k elements in Zn, there is a selection of the
parameters satisfying conditions C1–C5, on which the
algorithm Coloring in Figure 2 produces a k-coloring
that is injective from W .

Lemma 3.7. For a subset W of k elements in Zn, there
is a pair (a′, b′) in F1(p) such that

k/4−1∑

j=0

B(a′, b′, k/4,W, j)(B(a′, b′, k/4,W, j)− 1) < 4k.

Corollary 3.4. For a subset W of k elements in Zn,
there is a pair (a′, b′) satisfying condition C1, such that
if we let Wj = {x | φa′,b′,k/4(x) = j} and c′j = |Wj | for
all 0 ≤ j ≤ k′ = k/4− 1, then the list C ′ = [c′0, . . . , c

′
k′]

satisfies condition C2.

According to Corollary 3.4, there is a pair (a′, b′)
satisfying condition C1, on which each set Uj con-
structed in step 1 of the algorithm Coloring contains
c′j elements in the subset W for 0 ≤ j ≤ k′, and the list
C ′ = [c′0, . . . , c

′
k′] satisfies condition C2.

LetW be a collection of some of the subsetsWj with
c′j > 1, as given in Corollary 3.4 (W may not necessarily
contain all such subsets). Then we have the following
lemma.

Lemma 3.8. Let W be any collection of subsets Wj of
W as given in Corollary 3.4 where c′j = |Wj | > 1. Then
there is a pair (a′′, b′′) satisfying condition C1 such that
for at least one half of the subsets Wj inW, the function
φa′′,b′′,c′

j
(c′
j
−1) is injective from Wj to Zc′

j
(c′
j
−1).

Corollary 3.5. Let W>1 be the collection of all sub-
sets Wj in Corollary 3.4 with c′j = |Wj | > 1. Then there
is a list L′ = [(a′1, b

′
1), . . . , (a′r, b′r)] satisfying condition

C3 such that for at least one half of the subsets Wj in
W>1, the function φa′1,b′1,c′j(c′j−1) is injective from Wj to
Zc′

j
(c′
j
−1); for at least one half of the remaining subsets

Wj in W>1, the function φa′2,b′2,c′j(c′j−1) is injective from
Wj to Zc′

j
(c′
j
−1); and for at least one half of the remain-

ing subsets Wj in W>1, the function φa′3,b′3,c′j(c′j−1) is
injective from Wj to Zc′

j
(c′
j
−1); and so on.

Corollary 3.6. Let Wj, 0 ≤ j ≤ k′, be the subset as
given in Corollary 3.4, c′j = |Wj |, and C ′ = [c′0, . . . , c

′
k′].

Then there is a list L′ = [(a′1, b
′
1), . . . , (a′r, b′r)] satisfying

condition C3 and a mapping from C ′>1 to L′ satisfying
condition C4, such that for all j, if c′j > 1 is mapped to
(a′i, b

′
i), then the function φa′

i
,b′
i
,c′
j
(c′
j
−1) is injective from

Wj.

Therefore, for the pair (a′, b′) and the list C ′ =
[c′0, . . . , c

′
k′] in Corollary 3.4, which satisfy conditions

C1 and C2, respectively, and for the list L′ =
[(a′1, b

′
1), . . . , (a′r, b′r)] and the mapping from C ′>1 to L′ in

Corollary 3.6, which satisfy conditions C3 and C4, re-
spectively, each function φa′

i
,b′
i
,c′
j
(c′
j
−1) is injective from

the subset Wj to Zc′
j
(c′
j
−1) for all j. For each j, let W ′j

be the image of Wj under the function φa′
i
,b′
i
,c′
j
(c′
j
−1),

then W ′j ⊆ Zc′
j
(c′
j
−1) and |W ′j | = c′j . Since Fc′

j
(c′
j
−1)

is a (c′j(c
′
j − 1), c′j)-family of perfect hashing functions,

one Fc′
j

of the c′j-colorings in Fc′
j
(c′
j
−1) is injective from

W ′j . According to the algorithm Coloring, when this

c′j-coloring Fc′
j

is used for the algorithm, the c′j elements
in Wj are colored with distinct colors. Running this for
all j, we conclude that there is a list [Fc′0 , Fc′1 , . . . , Fc′k′],
where Fc′

j
is a c′j-coloring in the (c′j(c

′
j − 1), c′j)-family

Fc′
j
(c′
j
−1) of perfect hashing functions, satisfying con-

dition C5 such that all elements in the subset W are
colored with distinct colors.

Summarizing the above discussion, we conclude

Theorem 3.3. For each subset W of k elements in
Zn, there is a combination of parameters satisfying
conditions C1–C5 on which the algorithm Coloring
produces a k-coloring for Zn that is injective from W .

Combining Theorem 3.3 with Theorem 3.2 and by
running the algorithm Coloring on all possible combi-
nations of parameters satisfying conditions C1–C5, we
obtain an (n, k)-family of perfect hashing functions of
size O(6.383kk4 log k−4). For each k-coloring, the run-
ning time of the algorithm Coloring is O(k2). Recall
that we have let n = k2, we get

Theorem 3.4. For any integer k divisible by 4,
a (k2, k)-family of perfect hashing functions of
size O(6.383kk4 log k−4) can be constructed in time
O(6.383kk4 log k−2).

Using Theorem 3.1, we can easily extend Theo-
rem 3.4 to general values of n.

Theorem 3.5. For any integer n, and any integer k
divisible by 4, an (n, k)-family of perfect hashing func-
tions of size O(6.383kkO(log k) log2 n) can be constructed
in time O(6.383kkO(log k)n log2 n).

To extend Theorem 3.5 to general values of k,
suppose that k = 4k′ − h, where 1 ≤ h ≤ 3. We
first construct an (n, 4k′)-family F ′ of perfect hashing
functions of size

O(6.3834k′(4k′)O(log 4k′) log2 n)
= O(6.383kkO(log k) log2 n).

Now for each (4k′)-coloring F in F ′, we construct(
4k′

h

)
= O(k3) k-colorings for Zn by selecting every sub-

set of h colors in F and replacing them arbitrarily by the
remaining k = 4k′ − h colors. This gives a collection F
of O(6.383kkO(log k) log2 n) = O(6.4k log2 n) k-colorings
for Zn. To see that this is an (n, k)-family of perfect
hashing functions, let W be any subset of k elements in
Zn. Let W ′ be a subset of 4k′ elements in Zn obtained
from W by adding arbitrarily h elements. Since F ′ is
an (n, 4k′)-family of perfect hashing functions, there is
a (4k′)-coloring F ′ in F ′ that is injective from W ′. In

particular, this (4k′)-coloring F ′ is also injective from
W . Now the k-coloring F in F obtained from F ′ by
removing the other h colors is injective from W .

Theorem 3.6. For any integers n and k, where
n ≥ k, an (n, k)-family of perfect hashing func-
tions of size O(6.4k log2 n) can be constructed in time
O(6.4kn log2 n).

4 An improved 3-d matching algorithm

The method of perfect hashing function families seems
to provide a fairly general technique for solving NP-hard
problems, especially for those that are concerned with
finding a small number of proper elements in a large set.
In this section, we illustrate this method by presenting
a further improved deterministic algorithm for the 3-d
matching problem.

Let the universal triple set be U = X×Y ×Z, where
X, Y , and Z are three disjoint symbol sets. The symbols
in the sets X, Y , and Z will be called the symbols in
column-1, column-2, and column-3, respectively. A k-
matching is a set of k triples in which no two triples
share a common symbol. The 3-d matching problem is
for a given set S of triples and an integer k, to determine
whether S contains a k-matching.

The following theorem has been proved in [14].

Theorem 4.1. Let S be a triple set that contains a k-
matching Mk, and let f be a g-coloring on the symbols
in column-2 and column-3 in S such that no two symbols
in Mk are colored with the same color. Then there is an
algorithm that runs in time O(

∑k
i=0

(
g
2i

)
n) and returns

a k-matching in S.

Therefore, in order to construct a k-matching Mk in
the triple set S, we only need to construct a g-coloring
on the symbols in column-2 and column-3 in S so that
no two symbols in column-2 and column-3 in Mk are
colored with the same color. A straightforward way is to
construct an (m, 2k)-family of perfect hashing functions,
where m is the total number of symbols in column-2 and
column-3 in S. However, we can do even better. We
start with the following theorem.

Theorem 4.2. Let S be a set of n triples and let Mk−1

be a (k−1)-matching in S. If S contains a k-matching,
then there is a k-matching Mk in S such that each triple
in Mk−1 contains at least two symbols in Mk.

Therefore, if the (k − 1)-matching Mk−1 is given,
then we are missing at most 3k − 2(k − 1) = k + 2
symbols in the k-matching Mk. In particular, we can
assume without loss of generality that we are missing
at most 2(k + 2)/3 column-2 and column-3 symbols in

Mk (in fact, we can rotate the columns and try all three
possible cases). For this, we construct an (m′, k′)-family
F of perfect hashing functions on the column-2 and
column-3 symbols in S −Mk−1, where m′ is the total
number of column-2 and column-3 symbols in S−Mk−1,
and k′ = 2(k + 2)/3. The size of the family F is
bounded by O(6.4k

′
log2m′) = O(3.45k log2 n). By the

definition, one of the k′-colorings in the family F colors
all column-2 and column-3 symbols in Mk−Mk−1 with
different colors. Note that if we regard each column-
2 and column-3 symbol in Mk−1 as a color, then the
2(k − 1) column-2 and column-3 symbols in Mk−1 plus
each k′-coloring in F constitutes a ((8k−2)/3)-coloring
for the column-2 and column-3 symbols in S. Therefore,
the 2(k − 1) column-2 and column-3 symbols in Mk−1

and the family F make a family F ′ of O(3.45k log2 n)
((8k − 2)/3)-colorings in which at least one colors all
column-2 and column-3 symbols in Mk with different
colors.

Now it is clear how our algorithm proceeds.
After constructing the family F ′ of O(3.45k log2 n)
((8k − 2)/3)-colorings, which can be done in time
O(3.45kn log2 n), we color the column-2 and column-
3 symbols in S using each coloring in F ′, and apply
the algorithm in Theorem 4.1 to the colored instance.
According to the theorem, the algorithm runs in time
O(28k/3n) for each coloring in F ′. Moreover, if the set S
contains a k-matching, then by Theorem 4.1, one of the
coloring in F ′ will make the algorithm in Theorem 4.1
to return a k-matching in S. The total running time
of this process is bounded by O(3.45k log2 n · 28k/3n) =
O(21.91kn log2 n) = O(2.803kn log2 n).

The only thing that remains is how we can construct
the (k− 1)-matching Mk−1. For this, we can start with
a 1-matching to construct a 2-matching, and then from
the 2-matching to construct a 3-matching, and so on.
This iteration adds another factor of k to the running
time. The following theorem summarizes our discussion
above, which further improves Theorem 2.4.

Theorem 4.3. There is a deterministic algorithm of
running time O(2.803kkn log2 n) that solves the 3-d
matching problem.

References

[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta, Sim-
ple constructions of almost k-wise independent random
variables, Journal of Random Structures and Algo-
rithms, 3 (1992), pp. 289–304.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, Jour-
nal of the ACM, 42 (1995), pp. 844–856.

[3] H. L. Bodlaender, On linear time minor tests with
depth-first search, J. Algorithms, 14 (1993), pp. 1–23.

[4] J. L. Carter, and M. N. Wegman, Universal classes
of hash functions, Journal of Computer and System
Sciences, 18 (1979), pp. 143–154.

[5] J. Chen, D. K. Friesen, W. Jia, and I. A. Kanj,
Using nondeterminism to design efficient deterministic
algorithms, Algorithmica, 40 (2004), pp. 83–97.

[6] R. G. Downey, and M. R. Fellows, Parameterized
Complexity, Springer, New York, (1999).

[7] M. R. Fellows, C. Knauer, N. Nishimura, P. Ragde, F.
Rosamond, U. Stege, D. M. Thilikos, and S Whitesides,
Faster fixed-parameter tractable algorithms for match-
ing and packing problems, Lecture Notes in Computer
Science, 3221 (ESA 2004), pp. 311–322.

[8] M. L. Fredman, J. Komlos, and E. Szemeredi, Storing
a sparse table with O(1) worst case access time, Journal
of the ACM, 31 (1984), pp. 538–544.

[9] G. H. Hardy, and E. M. Wright, An Introduction to the
Theory of Numbers, 5th ed., Oxford University Press,
(1979).

[10] W. Jia, C. Zhang, and J. Chen, An efficient parame-
terized algorithm for m-set packing, Journal of Algo-
rithms, 50 (2004), pp. 106–117.

[11] B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler,
D. E. Root, B. R. Stockwell, and T. Ideker, Conserved
pathways within bacteria and yeast as revealed by global
protein network alignment, Proc. National Academy of
Sciences USA, 100 (2003), pp. 11394–11399.

[12] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith,
Divide-and-color, Lecture Notes in Computer Science,
(WG 2006), to appear.

[13] I. Koutis, A faster parameterized algorithm for set
packing, Information Processing Letters, 94 (2005),
pp. 7–9.

[14] Y. Liu, S. Lu, J. Chen, and S.-H. Sze, Greedy localiza-
tion and color-coding: improved matching and packing
algorithms, Lecture Notes in Computer Science, 4169
(IWPEC 2006), pp. 84–95.

[15] B. Monien, How to find long paths efficiently, Annals
of Discrete Mathematics, 25 (1985), pp. 239–254.

[16] M. Naor, L. J. Schulman, A. Srinivasan, Splitters
and near-optimal derandomization, In Proceedings of
the 39th IEEE Annual Symposium on Foundatins of
Computer Science, (FOCS 1995), pp. 182–190.

[17] A. Nilli, Perfect hashing and probability, Probability
and Computing, 3 (1994), pp. 407–409.

[18] C. Papadimitriou, and M. Yannakakis, On limited non-
determinism and the complexity of the V-C dimension,
Journal of Computer and System Sciences, 53 (1996),
pp. 161–170.

[19] J. P. Schmidt, and A. Siegel, The spatial complexity
of oblivious k-probe hash functions, SIAM Journal on
Computing, 19 (1990), pp. 775–786.

[20] J. Scott, T. Ideker, R. M. Karp, and R. Sharan,
Efficient algorithms for detecting signaling pathways in
protein interaction networks, Journal of Computational
Biology, 13 (2006), pp. 133–144.

