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Figure 1: Volume-preserving deformation of the hand model (36619 vertices): no skeletal hand model is involved, no self-intersections occur.

Abstract

We present an approach to define shape deformations by construct-
ing and interactively modifying C1 continuous time-dependent
divergence-free vector fields. The deformation is obtained by a path
line integration of the mesh vertices. This way, the deformation is
volume-preserving, free of (local and global) self-intersections, fea-
ture preserving, smoothness preserving, and local. Different mod-
eling metaphors support the approach which is able to modify the
vector field on-the-fly according to the user input. The approach
works at interactive frame rates for moderate mesh sizes, and the
numerical integration preserves the volume with a high accuracy.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling

Keywords: shape-deformation, volume-preserving, vector fields

1 Introduction

Shape deformations is a well-researched area in computer graphics
and animation with many applications ranging from automotive de-
sign to movie production. A variety of techniques have been devel-
oped to transform an original shape into a new one under a certain
number of constraints. These constraints can be for instance perfor-
mance, detail preservation, feature preservation, volume preserva-
tion, avoidance of (local or global) self-intersections, or local sup-
port. In addition, different metaphors for an intuitive definition and
handling of the deformation exist, like the free movement of certain
handles [Singh and Fiume 1998; Bendels and Klein 2003; Pauly
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et al. 2003], a two-handed metaphor [Llamas et al. 2003], or the
movement of a 9 dof object [Botsch and Kobbelt 2004].

Most existing deformation approaches have in common that they
are defined as a map from the original to the new shape, i.e., it
does not contain information about intermediate deformation steps.
For many applications, the user wants to explore the deformation in
an interactive manner, i.e., she wants to see a smooth change from
the original to the desired shape moving along certain paths. This
means that the deformation has to be recomputed again and again
at interactive frame rates. To do so, parts of the deformation can
be precomputed and reused for every intermediate deformation, see
for instance [Botsch and Kobbelt 2004; Botsch and Kobbelt 2005].

In this paper we introduce an alternative approach to describe shape
deformations. We assume that the shape is given as a triangu-
lar mesh. We construct a C1 continuous divergence-free 3D time-
dependent vector field v and obtain the new positions of every ver-
tex p of the shape by applying a path line integration of v starting
from p. This approach is motivated by two observations. First,
it corresponds to the metaphor of smooth deformations by observ-
ing the paths of the vertices over time. Second, due to the zero-
divergence of v we get a number of desired properties of the defor-
mation for free. In particular, the following properties hold:

• No self-intersections (neither local nor global) can occur. This
is due to the fact that path lines do not intersect in the 4D
space-time domain [Theisel et al. 2005].

• The deformation is volume-preserving. This is a well-known
property of divergence-free vector fields [Davis 1967].

• The deformation preserves the smoothness of the shape to first
order. This is due to the C1 continuity of v: under a path
surface integration, the normals of the evolving shape depend
on ∇v. Hence, for a C1 continuous v no discontinuities of the
surface normals appear during the integration.

• The deformation preserves details and sharp features in a
sense that no smoothing due to an energy minimization oc-
curs.

Figure 2a gives an illustration of the main idea. In addition to the
above-mentioned properties of v, we construct it to be non-zero
only in a certain area to obtain a local support of the deformation.
Although divergence-free vector fields have been used to model the
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Figure 2: (a) Vector field based shape deformation: every vertex of
the original shape undergoes a path line integration of v to find its
new position. (b) Blending function b(r).

flow of fluids [Foster and Fedkiw 2001], we are not aware of any ap-
proach to use them for the interactive deformation of solid shapes.

The rest of the paper is organized as follows: section 2 describes re-
lated work to shape deformations. Section 3 describes how to con-
struct the locally supported divergence-free vector field v. Section 4
shows a number of modeling metaphors of our technique. Section 5
gives implementation details. Section 6 gives an evaluation of our
technique and compares it with other approaches. Conclusions are
drawn in Section 7.

2 Related work

Current shape deformation approaches can be classified as surface
based methods or space deformation methods. Surface based meth-
ods define the deformation only on the shape’s surface. A com-
mon approach is to specify a number of original and target ver-
tices and compute the remaining vertex positions by a variational
approach [Welch and Witkin 1992; Taubin 1995]. Multiresolution
methods are well-established because of their ability to speed up
computations and preserve features [Zorin et al. 1997; Guskov et al.
1999; Kobbelt et al. 1998; Botsch and Kobbelt 2004]. More re-
cently, approaches have been proposed which rely on the solution
of the Laplace/Poisson equations [Alexa 2003; Lipman et al. 2004;
Sorkine et al. 2004; Yu et al. 2004; Lipman et al. 2005; Zayer et al.
2005]. These approaches end up in the repeated solution of a large
sparse linear system. Space deformation techniques modify objects
by deforming their embedded space. Prominent representatives of
this are free-form deformation methods which can be classified as
lattice-based [Sederberg and Parry 1986; Coquillart 1990; Mac-
Cracken and Joy 1996], curve-based [Barr 1984; Singh and Fiume
1998], or point-based [Hirota et al. 1992; Hsu et al. 1992]. Different
basis functions to define the space deformation have been applied,
like radial basis functions [Botsch and Kobbelt 2005] or swirls [An-
gelidis et al. 2004a]. [Zhou et al. 2005] extends the Laplacian ap-
proach from surface based techniques to a volumetric approach. An
often addressed issue when dealing with space deformations is the
avoidance of self-intersections [Angelidis et al. 2004b; Mason and
Wyvill 2001; Gain and Dodgson 2001]. A number of space defor-
mation techniques are designed to be volume preserving in a global
[Hirota et al. 1992; Desbrun and Gascuel 1995; Rappoport et al.
1996; Aubert and Bechmann 1997; Angelidis et al. 2004a] or local
[Botsch and Kobbelt 2003] way. The constraint of volume preser-
vation promises to give physically more plausible and natural de-
formations. [Angelidis et al. 2004a] presented the first space de-
formation that is both volume-preserving and foldover-free. While
this approach is based on volume-preserving swirls, our approach
is based on a formal construction of divergence-free vector fields.

3 Constructing the vector field v

The construction of the deformation vector field v is the core of
our approach. It must be flexible enough to describe a variety of
different deformations, but simple enough to be computed and up-
dated on-the-fly. We present the construction of v both for 2D and
3D. While we use the 3D case for our applications, the 2D case
serves mainly for illustrating the concept. Also, we formulate the
construction in the static (time-independent) context because the
extension to time-dependent fields is straightforward.

It is a well-known fact [Davis 1967] that a 2D divergence-free vec-
tor field v can be constructed as the co-gradient field of a scalar field
p(x,y):

v(x,y) =

(

−py(x,y)
px(x,y)

)

. (1)

Here, px and py denote the partial derivatives ∂ p
∂x and ∂ p

∂y , respec-
tively. In 3D, a divergence-free vector field v can be constructed
from the gradients of two scalar fields p(x,y,z), q(x,y,z) as

v(x,y,z) = ∇p(x,y,z) × ∇q(x,y,z). (2)

We are going to construct v as a piecewise field: inside a certain
region, v should be a simple and well-defined field, such as con-
stant (describing a simple translation of parts of the shape) or linear
(describing a rotation). We call this region the inner region of the
deformation. Also, we have an outer region in which we have a
zero deformation, i.e., v ≡ 0. Between them there is an interme-
diate region in which v is blended between inner and outer region
in a globally divergence-free and C1 continuous way. We specify
the different regions implicitly by defining a scalar region field r(x)
with x = (x,y) or x = (x,y,z), and two thresholds ri < ro. Then a
point x is in the inner region if r(x) < ri, x is in the intermediate
region if ri ≤ r(x) < ro, and x is in the outer region if ro ≤ r(x).

Let e(x), f (x) be two C2 continuous scalar fields which are sup-
posed to define v in the inner region, i.e. v = ∇e×∇ f there. Then
we can define the piecewise scalar fields p,q as

p(x) =







e(x) if r(x) < ri
(1−b) · e(x) + b ·0 if ri ≤ r(x) < ro
0 if ro ≤ r(x)

(3)

q(x) =







f (x) if r(x) < ri
(1−b) · f (x) + b ·0 if ri ≤ r(x) < ro
0 if ro ≤ r(x)

(4)

where b = b(r(x)) is a blending function given in Bézier represen-
tation as:

b(r) =
4

∑
i=0

wi B4
i

(

r− ri

ro − ri

)

(5)

where B4
i are the Bernstein polynomials [Farin 2002], w0 = w1 =

w2 = 0 and w3 = w4 = 1. Figure 2b illustrates b. Note that in
(3) and (4) the term b · 0 can safely be removed. We left it in the
equation to show that in the intermediate region, p is a weighted
combination of e and 0, and q is a weighted combination of f and
0.

(2)–(5) give a C1-continuous divergence-free vector field v if the
scalar fields e, f ,r together with the thresholds ri,ro are given and
e, f ,r are C2-continuous. This is ensured because the blending
function b is designed to have a sufficient number of vanishing
derivatives at r(x) = ri and r(x) = ro. A proof of this is in ap-
pendix 8. Also note that from e, f ,r and their first order partials, v
can be computed in a closed form. Appendix 8 shows this as well.
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Figure 3: Constructing a constant v inside the inner region: (a) p as
height field in inner and outer region, (b) p in all regions, (c) v in
inner and intermediate region.

We illustrate our concept with a 2D example. Setting the region
field r(x,y) = x2 +y2, ri = 1 and ro = 4, the inner region is the unit
circle, while the intermediate region is the ring between the radii 1
and 2. We want v = (u,v)T to be constant inside the inner region.
To do so, e is the linear field e(x,y) = v x−u y from which (3) and
(1) give v in all regions. Figure 3a illustrates p in the inner and
outer region as height field. Figure 3b additionally considers p in
the intermediate region. Figure 3c shows the resulting v as a Line
Integral Convolution (LIC) image in the inner and intermediate re-
gion. In the outer region, v is constant zero.

3.1 Special Deformations

Theoretically, every divergence-free vector field v can be consid-
ered in the inner region, i.e., arbitrary C2 scalar fields e, f can be
chosen. However, for our applications we particularly used con-
stant, linear, and quadratic vector fields.

A constant vector field v in the inner region describes a translation
inside this region. To get a constant field v = (u,v,w)T with ‖v‖ =
1, we choose two arbitrary orthogonal vectors u, w with ‖u‖ =
‖w‖ = 1 and uv = uw = vw = 0. Also, we have to set a center
point c inside the inner region. This is necessary because e, f have
a constant to be added as degree of freedom. The center point c
fixes this by setting e(c) = f (c) = 0. Then the linear scalar fields

e(x) = u (x− c)T , f (x) = w (x− c)T (6)

produce v because (6) yields ∇e ≡ u and ∇ f ≡ w.

A linear vector field v is used to describe a rotation inside the inner
region. Given a rotational axis by a center point c and the normal-
ized axis direction a, the field e is linear with the gradient a, while
the field f is quadratic, describing the squared Euclidean distance
to the rotation axis:

e(x) = a (x− c)T , f (x) = (a× (x− c)T )2. (7)

4 Modeling metaphors

Our approach works as a simultaneous path line integration and up-
dating of v. In fact, at a certain time, for every vertex one integration
step of a numerical path line integration of v is carried out. Then
v is updated, i.e., the defining fields e, f ,r together with ri,ro are
changed before the next integration step is carried out. There are
different strategies to define and update v, leading to a number of
modeling metaphors of our technique. Before describing them in
detail, we explain the visualization of the deformation tools, i.e., v
at a certain time. We represent the region field r by a red semitrans-
parent isosurface r(x) = ri and a green surface r(x) = ro separating
the different regions of the deformation. If inside the inner region
we use a constant v (section 3.1), we show it by an arrow whose
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Figure 4: Deformation tools: (a) translation, (b) rotation inside the
inner region.
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Figure 5: Deforming a sphere with an implicit tool: the parts inside
the inner region follow the path of the tool.

origin is the central point c and whose direction denotes v. Figure
4a shows an example where r describes the distance to a certain
point and c is in the center of the inner region (red sphere). If we
apply a rotation inside the inner region (section 3.1), we show c and
the central axis. If we combine it with a linear r, the isosurfaces
r(x) = ri and r(x) = ro are planes. In order to make the deforma-
tion local, we restrict it to a cylinder with the main axis parallel to
∇r and c on the main axis. Figure 4b shows the tool. Since this way
the deformation vector field v is discontinuous across the cylinder
barrel, the tool is only applicable if no part of the shape intersects
the cylinder barrel at the beginning of the deformation.

4.1 Implicit Tools

For the metaphor of implicit tools, we define an arbitrary scalar
field r together with ri and ro. Usually, r is a simple function de-
scribing the distance to a point (Figure 5) or a line segment (Figure
6). Furthermore, c is located in the center of the inner region of
the deformation. Inside this inner region, v is constant, describing a
translation where its length and direction is determined by position
and movement of an interactive input device (e.g. a mouse). When
the tool is interactively moved, v is updated on-the-fly according to
the movement. The step size of the path line integration is chosen
so that the path line follows the path of the tool: if the interactive
motion changes the position of the tool by ∆r, then the integration
inside the inner region moves the points by ∆r as well (see Section
5.1 for more detail). This way we get the following property: if
at the beginning of the deformation parts of the surface are in the
inner region of the tool, they follow the path of the tool. Figure 5
shows an example. If at the beginning of the deformation the inner
region is completely outside the shape, the shape will never enter
the inner region. Figure 6 illustrates this. Figure 7 shows the result
of an extreme deformation by moving the tool toward and through
the shape: no self-intersection can occur.



Figure 6: Moving the implicit tool toward the shape: the inner re-
gion never enters the shape.

(a)
(b) (c)

Figure 7: (a),(b) Moving an implicit tool through a sphere shape:
no self-intersections occur. (c) Same shape as (b) but with cutting
plane.

4.2 Deformation Painting

In this modeling metaphor, the tool is moved along a path on the
surface of the shape. For this path, the surface is locally deformed
into or out of the shape. If the tool is at the location xs on the shape
at a certain time, we use r(x) = ‖x−xs‖, ri = 0, and ro is interac-
tively chosen to steering the area of influence of the deformation.
This means that the inner region is only the point xs for which we
use a constant v in the direction opposite to the surface normal of
xs. Figure 8 shows an example of deformation painting on a hand
model.

4.3 Moving point sets

In this metaphor, we mark a number of points on the shape. These
points may be isolated or located on a curve. Then we set r as a
smooth approximated distance function to this point set, ri = 0, and
ro is interactively chosen. Inside the inner region, a constant v is
used. For the distance function to the point set, we used the ap-
proach described in [Biswas and Shapiro 2004]. Figure 9 illustrates
an example. The barycenter of all points is used as c. Note that in
this scenario the inner and the intermediate regions may consist of
multiple unconnected parts.

4.4 Collision tools and shape stamping

In this scenario, the tool is described by an arbitrary closed tool
shape for which a repeated collision detection with the deformed
shape is carried out. To do so, we used a bounding box hierarchy
based approach implemented in [ColDet ]. Based on the detected
collision points, r is constructed to be zero only in the areas of
collision. Similar to moving points sets, we used a smooth approx-
imated distance function for r along with ri = 0. Inside the inner
region, v is constant for every time step, following the path of the
input device. Figures 10a,b illustrate the region function for the
hand shape. Here, both the inner and the intermediate region con-
sist of several unconnected parts. Figure 11 shows the deformation
of the fan data set using the hand tool. Note that the sharp features
are preserved under the deformation.

Figure 8: Deformation painting on a hand model.

(a) (b) (c)

Figure 9: Moving point sets: the inner region consist of two uncon-
nected parts close to the eyes of the bust.

We also used this modeling metaphor for shape stamping: moving
the tool shape toward the deforming shape leaves the footprint on
the deforming shape. Figures 10c,d show an example stamping a Y-
shaped tool shape onto a sphere. Figure 13 shows the deformation
of the crater data set by using the Armadillo model as tool.

4.5 Twisting and Bending

Up to now, the vector field inside the inner region was constant.
Now we apply linear and quadratic vector fields to get twisting and
bending effects. For a twisting, r is linear and its gradient cor-
responds the direction of the twisting axis. The point c is on the
twisting axis, and the rotational axis for the inner vector field co-
incides with the twisting axis as well. Inside the inner region we
use a linearly increasing rotation defined by e(x) = (a (x− c)T )2,
f (x) = (a× (x−c)T )2. Figure 14 shows an extreme twisting of the
box model (51202 vertices) as well as a moderate twisting of the
camel model.

To get a bending effect, we used the bending tool described in Fig-
ure 4b. The region field r is linear and its gradient is perpendicu-
lar to the rotation axis. The thresholds ri,ro are chosen such that
r(c) = 0.614ri +(1−0.614)ro. This choice comes from the defini-
tion of the blending function: b(0.614)≈ 1/2. During the bending,
the gradient of r is changed with half the angle speed as the rotation
in the inner region. Figure 15 gives an example. e(x) and f (x) de-
scribe a rotation (Equation 7). Figure 1 shows some deformations
of the hand data. The result looks rather realistic, even though no
skeletal hand model is involved. Figure 16 shows the bending of
the Armadillo model.

Figure 17 shows two shapes created from a sphere in an interactive
session by applying all modeling metaphors described above. The
session time for each of the models was approximately 30 minutes.

5 Implementational Details

5.1 Integration with adaptive stepsize

Different approaches for a numerical stream/path line integration
have been studied [Nielson et al. 1997], where higher order tech-
niques with an adaptive stepsize turned out to have the best trade-
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Figure 10: Collision tools. (a),(b) The inner and the intermediate
region consists of unconnected parts. (c),(d) Shape stamping: a
Y-shaped tool is stamped onto a sphere.

Figure 11: Deforming the fan data set.

off between speed and accuracy. Thus, in our implementation we
used a fourth order Runge-Kutta integration with adaptive stepsize.
If a constant stepsize were chosen, the interplay between integra-
tion and updating v is simple: for each vertex, one integration step
is carried out, then v is updated. For an adaptive step size, the
synchronization between integration and updating v is explained in
the following example: suppose we use an implicit tool where the
mouse moves the central point from ci at the time ti to ci+1. Further
assuming that ci and ci+1 are in the inner region of the deformation,
v has to fulfill

v(ci, ti) = v(ci+1, ti+1) = (ti+1 − ti) · (ci+1 − ci) (8)

Following the description of path lines in [Theisel et al. 2005], we
integrate the 4-dimensional vector field

ṽ(x, t) =

(

(1− t−ti
ti+1−ti )vi +

t−ti
ti+1−ti vi+1

1

)

(9)

with an adaptive stepsize from a point (x, ti) until it reaches a point
(x́, ti+1). In (9), ti+1 is chosen to fulfill (8) and vi, vi+1, are com-
puted from r(x) = ‖x− ci‖ and r(x) = ‖x− ci+1‖ respectively.

5.2 Remeshing

Obviously, large deformations on triangle meshes can cause un-
pleasing artifacts due to an undersampling of the surface (Figure
18a). Furthermore, undersampling can lead to significant volume
changes. We deal with this problem by resampling (remeshing) the
mesh. For doing so, a variety of approaches exist (see [Alliez et al.
2005] for a survey). For our algorithm, we used some ideas from
[Gain and Dodgson 1999]. The basic idea is to do the remeshing not
on the deformed but on the original shape, and let the new vertices
undergo the same deformation as the original vertices.

1. While the user performs a deformation on the mesh, the un-
deformed mesh M and the deformation path (the subsequent
translations/rotations) are stored.

2. When the user finishes the operation (in our implementation:
when the user releases the mouse button), all edges (ordered
by length) of the deformed mesh M′ are tested for refinement:
if an edge is longer than a certain threshold or the angle be-
tween the normals of the end-vertices is large, an edge split

Figure 12: Feature preservation: (a),(b) Deforming a model with
small details. (c),(d) Bending Armadillo’s leg.

Figure 13: Armadillo on the moon: deforming the crater data set
with the Armadillo as tool.

is performed both on M and M′. Using the stored deforma-
tion path, all new vertices of M are deformed, i.e., path line
integrated. Finally, the new vertex positions are copied to the
corresponding vertices of M′.

3. In order to guarantee a uniform distribution of the vertices and
to eliminate slivers (long, thin triangles), we apply a diffusion
of the vertices in M′: first, all moved vertices and their imme-
diate neighbors are marked for diffusion. Each marked ver-
tex is moved toward the barycenter of its 1-ring. Afterward,
the vertex is projected back onto the surface of the undiffused
mesh. This operation is repeated for a fixed number of steps.

4. Subsequent edge splits increase the overall vertex valence and
some deformations produce surfaces that are oversampled.
Both issues are tackled by a decimation step on M′: all edges
whose length is smaller than a certain threshold and whose
vertex normals enclose a small angle are collapsed at their
midpoints.

5. Step 3 is performed again, where the vertices involved in edge
collapses are considered as moved vertices.

Figure 18 (b) shows a mesh after an application of the above algo-
rithm.

5.3 GPU Implementation

Being based on path line integration of single points and being with-
out the need for additional information like mesh connectivity or
a skeleton, our deformation approach is highly parallelizable us-
ing graphics hardware. We implemented a vertex program to per-
form an adaptive fourth order Runge-Kutta path line integration of
points. All necessary parameters like translation vector, rotation
axis, contact points etc. are passed to the shader as uniform vari-
ables. The resulting positions are rendered to a floating point frame-
buffer. Due to the incremental nature of the algorithm (collision
detection after each small deformation, painting on a continually
deforming surface etc.) a read-back of the computed points has to
be performed after each deformation. Although this drops perfor-
mance, the computation is still about ten times faster than on the
CPU. A detailed performance evaluation can be found in section 6.
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Figure 14: Twisting the box model: (a) placing the tool, (b)-(e)
twisted models, (f) twisted camel.

Figure 15: (a),(b) Bending a cylinder. (c) Box after bending.

6 Evaluation and Comparison

In this section we give an evaluation of our technique and compare
it with other deformation approaches. We do so in terms of visual
quality, other modeling metaphors, speed and accuracy.

Visual quality: To get a comparison with existing techniques, we
apply our technique to a number of standard test data sets for which
other deformation approaches have been reported in the literature.
The twisting of a box (Figure 14) has been considered in [Yu et al.
2004; Lipman et al. 2005; Zhou et al. 2005]. Our result shows the
behavior of a volume-preserving twisting even for an extreme de-
formation. The effect of bending a cylinder has been demonstrated
for different approaches in [Botsch and Kobbelt 2003; Botsch and
Kobbelt 2004; Zhou et al. 2005]. Our result (Figures 15a-b) shows a
realistic looking bend without self intersections. Also, the bending
of the box (Figure 15c) and the deformation of the hand (Figure 1)
look plausible and do not contain self-intersections. Furthermore,
small scale features are deformed in a plausible manner (Figure 12).

Other modeling metaphors: Our implicit tool metaphor using r as
the distance to a point (Figures 5, 7) is similar to the swirling sweep-
ers metaphor [Angelidis et al. 2004a]. However, our metaphor is
more flexible in the sense that other implicit functions can be used
(Figure 6). Moreover, contrary to swirling sweepers our method
does not have to choose an appropriate number of basic swirls to
approximate the final deformation.

Many modeling metaphors [Botsch and Kobbelt 2004; Sorkine
et al. 2004; Botsch and Kobbelt 2005] work by setting areas of zero
deformation and areas of full deformation on the surface. Then the
full deformation is defined by a sequence of translations and rota-
tions. Our tools have a similar metaphor, with the main difference
that we define the regions of zero and full deformation implicitly,
i.e. by marking the underlying space. This may create problems in
areas where surface parts of zero and full deformation are spatially
close to each other (for instance the fingers of a hand). For these
cases we use the cylinder tool (Figure 4b) and restrict the definition
to the area inside the cylinder.

(a) (b) (c)

Figure 16: Bending the Armadillo model.

(a) (b)

Figure 17: Shapes created from spheres in an interactive session.

Speed: The performance of our approach depends on a number of
factors: the number of vertices inside the inner region of the defor-
mation, the number of vertices in the intermediate region, the cho-
sen modeling metaphor, and the chosen region field r. In general,
vertices in the intermediate region are more expensive to integrate
than vertices in the inner region because v has a more complicated
form there. Also, a simple r (such as the distance to a point in an
implicit tool) gives a higher performance. Finally, for the metaphor
of shape stamping, the additional collision-detections drops the per-
formance. To get an evaluation of the performance of our approach,
we consider a number of benchmark deformations. We placed an
implicit tool describing the distance to a point in such a way that
no vertex of the shape is in the outer region (i.e., that all vertices
have to be integrated), and that most of the vertices are in the (most
expensive) intermediate region. Then we applied a rather strong
deformation. Figure 19 shows the four benchmark deformations by
the initial and final shapes as well as used deformation tools. Here,
the sphere-shaped intermediate region (green) has been cut out at
the black boundary lines. The following table shows the perfor-
mance on a AMD Opteron 152 (2.6 GHz) with 2 GB RAM and
a GeForce 6800 GT GPU. There, #vert denotes the number of ver-
tices of the model, #steps denotes the number of integration steps to
come from the original to the final shape, sps(CPU) gives the num-
ber of integration steps per second for the CPU implementation,
and sps(GPU) does so for the GPU implementation.

model #vert #steps sps(CPU) sps(GPU)
bust 30696 212.737 31.65260 292.2210

hand 36619 186.194 26.94950 257.8860
armadillo 172974 152.656 5.79448 61.8539

dragon 437645 249.196 2.29102 27.2049

It turns out that even for rather large meshes the deformations can
be carried out in an interactive manner. All the examples in the
accompanying video are captures from interactive sessions.

Accuracy: The statement that our approach is volume-preserving
holds only if every surface point of the shape undergoes an exact
path line integration. In reality, we carry out a numerical inte-
gration only for discrete surface points: the mesh vertices. Thus,
slight changes of the volume during the deformation can be ex-
pected. However, the following table shows that they are mini-
mal even for strong deformations. Here, we measured the error
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Figure 18: Remeshing. (a) Mesh during deformation, (b) mesh after
deformation and remeshing.

(a) (b) (c) (d)

(e) (f)
(g)

(h)

Figure 19: Benchmark deformations. First line: original shapes and
parts of tools. Second line: deformed shapes and parts of tools.

as error =
volume(deformed shape)

volume(original shape) −1.

model orig. shape deformed shape error
sphere fig. 5a fig. 7b -0.001060

box, twisted fig. 14a fig. 14d 0.000781
box, bent fig. 14a fig. 15c 0.000751

fan fig. 11a fig. 11c -0.000007
armadillo fig. 16a fig. 16c 0.001344

dragon fig. 19d fig. 19h -0.001520
spider fig. 5a fig. 17a 0.001875

own monster fig. 5a fig. 17b 0.000070

7 Conclusion and Future Work

In this paper we introduced an alternative approach to shape defor-
mations: by carrying out a path line integration of a time-dependent
vector field for each shape vertex. This way, simple properties
of the vector field lead to useful properties of the deformation: a
divergence-free vector field gives a volume-preserving deforma-
tion, self-intersections cannot occur, and sharp features are pre-
served. Also small scale features are deformed realistically. We
have also shown that the performance of the deformation suffices
for real-time applications for moderately large meshes. The accu-
racy in volume-preserving is rather high.

There is a number of issues for future research. First, the perfor-
mance can further be increased by a multi-processor parallelization
of the integration. This is possible because the integration of the
vertices can be carried out independently of each other. Second,
since the method does not rely on any connectivity information of
the mesh, an application to point-based shape representations seems
possible. Finally, the modeling metaphor should be extended such
that the regions of full and zero deformation can be marked explic-
itly on the surface instead of implicitly in the embedding 3D space.
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8 Appendix

Given the C2 continuous scalar fields e, f and the C2 continuous
region field r with the thresholds ri,ro, we show that v constructed
by (2)–(5) is divergence-free and C1. The zero-divergence follows
directly from (2) [Davis 1967]. For showing the C1 continuity, we
have to consider the boundaries of the regions, i.e., the locations x
with r(x) = ri and r(x) = ro.

For r(x) = ri, (5) gives

b = 0 ,
d b
d r

= 0 ,
d2 b
d r2 = 0. (10)

For b = b(r(x)), basic rules in differential calculus give

∇b =
d b
d r

∇r , J(∇b) =
d b
d r

J(∇r) +
d2 b
d r2 ∇r ∇rT . (11)

To prove that v is C1, we have to show

∇e × ∇ f = ∇((1−b) e) × ∇((1−b) f ) (12)
J(∇e × ∇ f ) = J(∇((1−b) e) × ∇((1−b) f )) (13)

(2)–(4) give that the left-hand side of (12) describes v in the inner
region, while the right-hand side describes v in the intermediate
region. (13) does so for the Jacobian of v in inner and intermediate
region. Applying basic rules of differential calculus, we get

∇((1−b) e) = (1−b) ·∇e − e∇b (14)
∇((1−b) f ) = (1−b) ·∇ f − f ∇b (15)

and

J(∇((1−b) e)) = (1−b) J(∇e) − ∇e ∇bT

− e J(∇b) − ∇b ∇eT (16)

J(∇((1−b) f )) = (1−b) J(∇ f ) − ∇ f ∇bT

− f J(∇b) − ∇b ∇ f T (17)

Inserting (10),(11) into (14),(15),(16),(17) we get

∇((1−b) e) = ∇e , ∇((1−b) f ) = ∇ f (18)
J(∇((1−b) e)) = J(∇e) , J(∇((1−b) f )) = J(∇ f )(19)

which gives (12),(13). In fact, (18),(19) show that p and q defined
in (3), (4) are C2 across locations with r = ri.

For r(x) = ro, (5) gives

b = 1 ,
d b
d r

= 0. (20)

To prove that v is C1, we have to show

∇((1−b) e) × ∇((1−b) f ) = 0 (21)
J(∇((1−b) e) × ∇((1−b) f )) = 0 (22)

where the left-hand side of (21) describes v in the intermediate re-
gion and the right-hand side in the outer region. Inserting (11),(20)
into (14), (15) gives (21). Inserting (11),(20) into (16), (17) together
with J(a×b) = J(a)×b+a×J(b) gives (22). It shows that at lo-
cations with r = ro, p and q are only C1, whereas v is C1 as well.
The C1 continuity of p and q is sufficient here because we have the
additional condition that v equals zero.

Note that (14),(15) together with (11) and d b
d r = 2r

ro−ri
from (5) gives

the closed form of v if e, f ,r and their first order partials are given.


