# Large Mesh Deformation Using the Volumetric Graph Laplacian(VGL)

Kun Zhou1 Jin Huang2\* John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1

Microsoft Research Asia
 Zhejiang University
 Microsoft Research

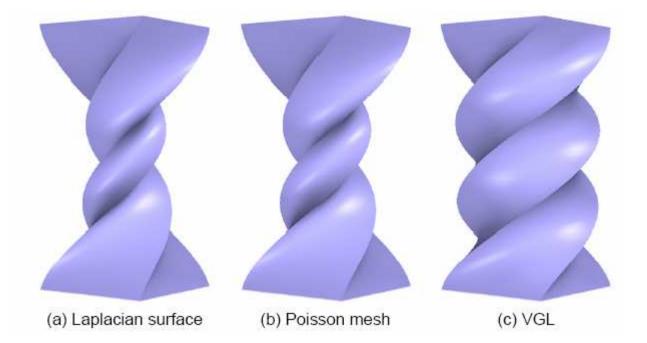
Fan Zhang

#### Review

• Laplacian of graph

$$\delta_i = \mathscr{L}_G(p_i) = p_i - \sum_{j \in \mathscr{N}(i)} w_{ij} p_j$$

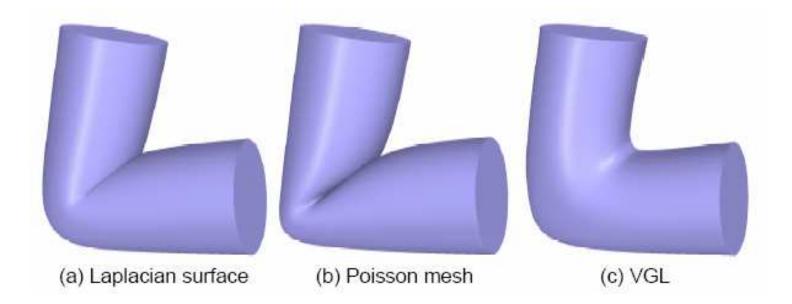
$$w_{ij} = 1/|\mathcal{N}(i)|$$


• Compute the new position of the vertices

$$\min_{p'_i} \left( \sum_{i=1}^N \|\mathscr{L}_G(p'_i) - \delta'_i\|^2 + \alpha \sum_{i=1}^m \|p'_i - q_i\|^2 \right)$$

#### Review

• Disadvantages:


The result not so good in some large deformations



#### Review

• Disadvantages:

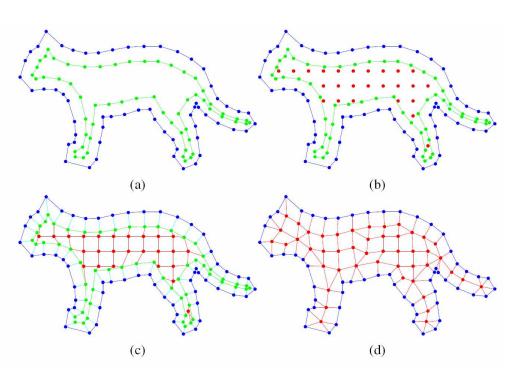
The result not so good in some large deformations



#### Advantage of VGL

An inside graph ----- prevent large volume change

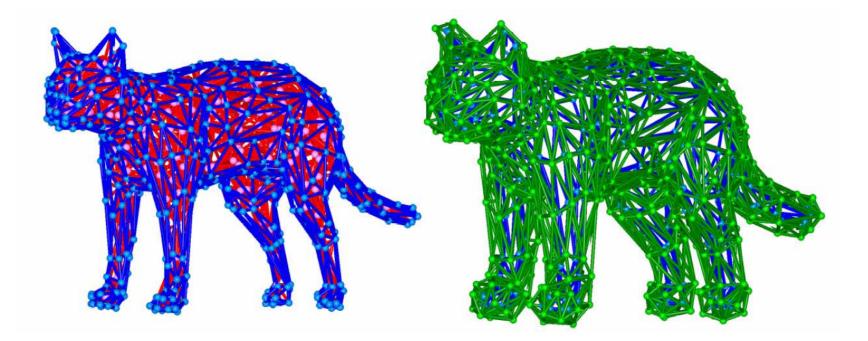
An outside graph ------ prevent local self-intersaction


A better defined weight ----- improve the result

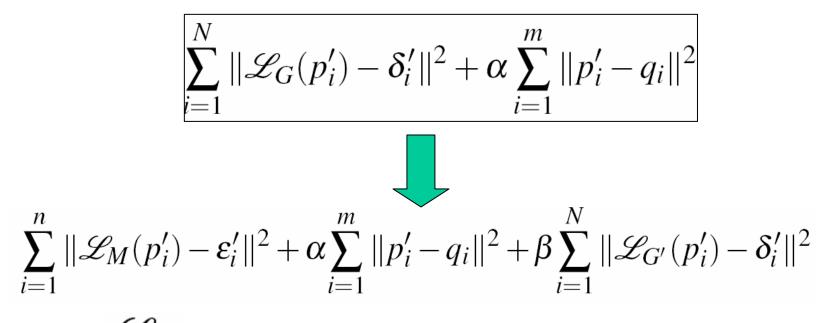
# Process of mesh deformation using VGL

- Constructing inner graph
- Constructing outer graph
- Calculate Laplacian for each of the vertices
- Perform a deformation (curve-based)
- Calculate new positions for vertices

#### Constructing inner graph


- Construct an inner shell *Min* for the mesh*M* by offsetting each vertex a distance in the direction opposite its normal .
- Embed *Min* and *M* in a bodycentered cubic (BCC) lattice. Remove lattice nodes outside *Min*.
- Build edge connections among *M*, *Min*, and lattice nodes.
- Simplify the graph using edge collapse and smooth the graph.




### Constructing outer graph

• use the iterative normal-offset method to construct Mout just as creating Min

• Build connections between M and Mout.



#### Laplacian of the Volumetric Graph



 $\mathscr{L}_M$  is laplacian for original mesh

 $\mathscr{L}_{G'}$  is laplacian for inner and outside graph

 $\beta$  balances between surface and volumetric details

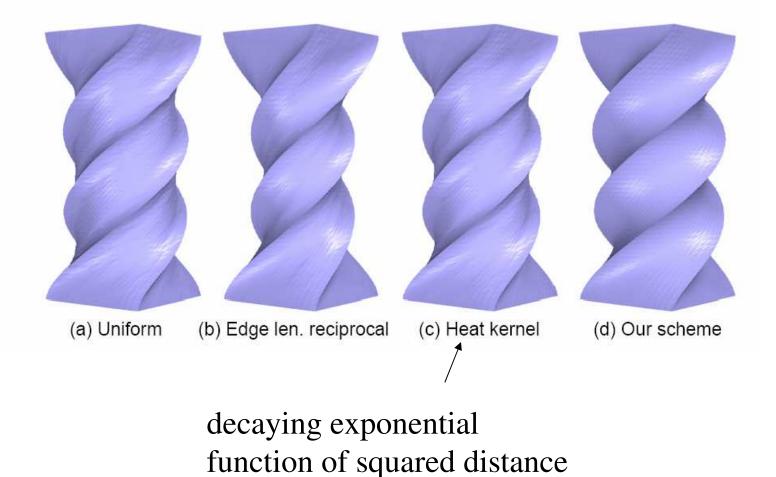
## Laplacian of the Volumetric Graph Weighting Scheme

• For the mesh Laplacian  $\mathscr{L}_M$ 

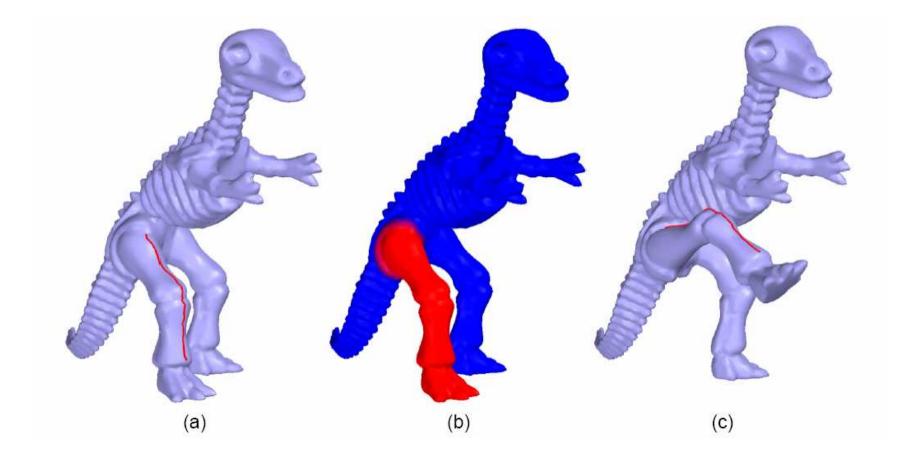
 $w_{ij} \propto (\cot \alpha_{ij} + \cot \beta_{ij})$ 

where  $\alpha_{ij} = \angle (p_i, p_{j-1}, p_j)$  and  $\beta_{ij} = \angle (p_i, p_{j+1}, p_j)$ 

# Laplacian of the Volumetric Graph Weighting Scheme


• For the graph Laplacian  $\mathscr{L}_{G'}$ 

$$\min_{w_j} \left( \|p_i - \sum_{j \in \mathcal{N}(i)} w_j p_j\|^2 + \lambda \left( \sum_{j \in \mathcal{N}(i)} w_j \|p_i - p_j\| \right)^2 \right)$$
subject to
$$\sum_{j \in \mathcal{N}(i)} w_j = 1 \text{ and } w_j > \xi.$$


generate Laplacian coordinates of smallest magnitude

based on a *scale-dependent umbrella operator* which prefers weights in inverse proportion to the edge lengths.

# Laplacian of the Volumetric Graph Weighting Scheme



## Deformation of the Volumetric Graph Curve-based deformation



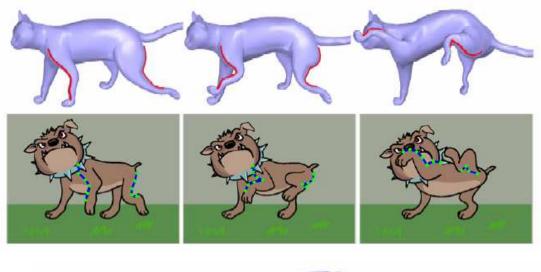
# Deformation of the Volumetric Graph Curve-based deformation

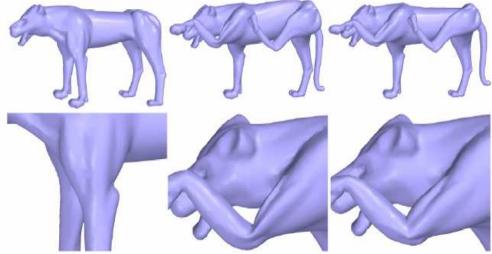
- Select control curve (control points)
- Calculate deformed positions for control points (WIRE)  $p' = C'(u_p) + R(u_p) \left( s(u_p)(p - C(u_p)) \right)$
- Propagation the deformation to the rest points of the graph

Strength field----based on the shortest edge path (discrete geodesic distance) from *p* to the curve. ----constant, linear, and gaussian

## Deformation of the Volumetric Graph Curve-based deformation

• Weighting all the vertices on the control curve----smoother


reciprocal of distance  $1/\|p-q_i\|_g$ 


Gaussian function 
$$\exp\left(-\frac{(\|p-q_i\|_g - \|p-q_p\|_g)^2}{2\sigma^2}\right)$$

 $||p - q||_g$  discrete geodesic distance from p to q

 $\sigma$  the width of the Gaussian

# Result of VGL





# Result of VGL

|                    | arma       | dino      | cat       | lioness   | dog    |
|--------------------|------------|-----------|-----------|-----------|--------|
| # mesh vertices    | 15,002     | 10,002    | 7,207     | 5,000     | 10,002 |
| # graph points     | 28,142     | 15,895    | 14,170    | 8,409     | 17,190 |
| graph generation   | 2.679s     | 1.456s    | 1.175s    | 1.367s    | 1.348s |
| LU decomposition   | 0.524s     | 0.286s    | 0.348s    | 0.197s    | 0.118s |
| back substitution  | 0.064s     | 0.028s    | 0.030s    | 0.019s    | 0.011s |
| # control curves   | 6          | 5         | 4         | 5         |        |
| # key frames       | 10         | 9         | 8         | 8         |        |
| session time (min) | $\sim 120$ | $\sim 90$ | $\sim 30$ | $\sim 90$ |        |