## Subspace Gradient Domain Mesh Deformation



#### Scott Schaefer





### Contributions

Framework for constrained deformation
 Skeletal constraints
 Volume preservation
 Projection-based manipulation
 Detail preservation function
 Fast non-linear, sub-space solver

## Skeletal Constraints



### **Constructing Bones**

User drags a line in screen space
For each pixel

Find first two intersections with surface

Fit a least squares line to all midpoints



#### Region of Influence

Construct supporting planes (normal perpendicular to ab) at end-points
 Flood from intersection triangles outward until all connected



#### Mathematical Constraint

For each sample point along ab
 Compute MV coordinates with respect to vertices in region of influence

Close mesh by fanning to centroid on ends



### **Volume Preservation**

















![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Picture_1.jpeg)

## Calculating Volume

$$volume = \sum_{i} \frac{1}{6} \begin{vmatrix} x_{i,1} & y_{i,1} & z_{i,1} \\ x_{i,2} & y_{i,2} & z_{i,2} \\ x_{i,3} & y_{i,3} & z_{i,3} \end{vmatrix}$$

![](_page_29_Picture_2.jpeg)

## Projection-Based Manipulation

![](_page_30_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_34_Figure_2.jpeg)

$$p_0 = \frac{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v$$

![](_page_35_Figure_2.jpeg)

$$p_0 = \frac{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v$$

![](_page_36_Figure_2.jpeg)

$$p_0 = \frac{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v$$

![](_page_37_Figure_2.jpeg)

$$p_0 = \frac{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_{i} (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v$$

#### Non-linear Laplacian coordinates

![](_page_38_Figure_2.jpeg)

$$\sum_{i} \alpha_{i} (p_{i} - p_{0}) \times (p_{i+1} - p_{0}) = v$$

#### Find $\alpha_i$ through pseudoinverse

![](_page_39_Figure_2.jpeg)

## Non-linear Minimization

![](_page_40_Picture_1.jpeg)

Construct a low-res approximation of mesh
 Express constraints in terms of MV coordinates

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_1.jpeg)

Constraints are on the high-res mesh... NOT the low-res mesh

A variant of a multi-grid solver

Speeds up convergence and helps stability

![](_page_43_Picture_4.jpeg)

![](_page_43_Figure_5.jpeg)

Constraints are on the high-res mesh... NOT the low-res mesh

- A variant of a multi-grid solver
- Speeds up convergence and helps stability

| model     | <b># vertices</b><br>(original mesh) | # vertices<br>(coarse mesh) | full space | subspace |
|-----------|--------------------------------------|-----------------------------|------------|----------|
| Armadillo | 30,002                               | 220                         | 2.8        | 9.1      |
| Horse     | 14,285                               | 427                         | 6.9        | 8.2      |
| Tweety    | 10,240                               | 286                         | 12         | 23.8     |
| Dinosaur  | 10,002                               | 159                         | 9.5        | 34.5     |
| DNA       | 19,184                               | 194                         | NA*        | 16.7     |
| Santa     | 25,777                               | 448                         | NA*        | 5.3      |

# Resolution of low-res mesh affects quality of deformation

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

![](_page_46_Picture_0.jpeg)

### Conclusions

 Most useful deformation constraints involve non-linear functions

MV coordinates accelerate solving

Don't be afraid of non-linear optimization!!!

![](_page_47_Picture_4.jpeg)