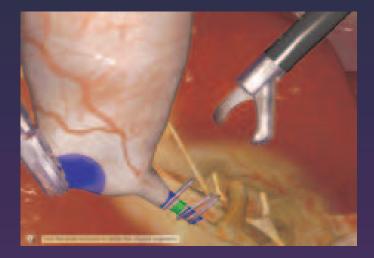
Free-Form Deformation of Solid Geometric Models

Scott Schaefer

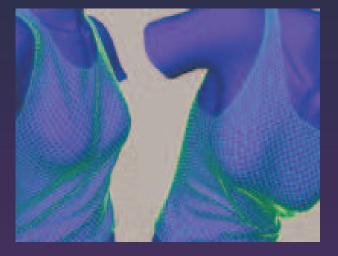
Deformation

Deformation

Deformation Applications

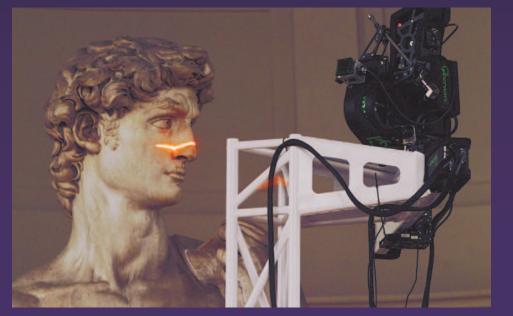


Toy Story © Disney / Pixar



Challenges in Deformation

Large meshes – millions of polygons
 Need efficient techniques for computing and specifying the deformation



Digital Michelangelo Project

FFD Contributions

Smooth deformations of arbitrary shapes
Local control of deformation
Performing deformation is fast

Widely used
 Game/Movie industry
 Part of nearly every 3D modeler

Bernstein Polynomials

Different polynomial basis $1 t^2 t^3$ $(1-t)^3$ $3(1-t)^2t$ $3(1-t)t^2$ t^3 Arbitrary degree polynomials (1-t) t $(1-t)^2 \quad 2(1-t)t \qquad t^2$ $(1-t)^3$ $3(1-t)^2t$ $3(1-t)t^2$ t^3

Properties of Bernstein Polynomials

All polynomials can be written as Bernstein polynomials

$$\sum_{i=0}^{n} a_{i}t^{i} = \sum_{i=0}^{n} b_{i} \frac{n!}{(n-i)!!} (1-t)^{n-i}t^{n-i}$$

Polynomials sum to one

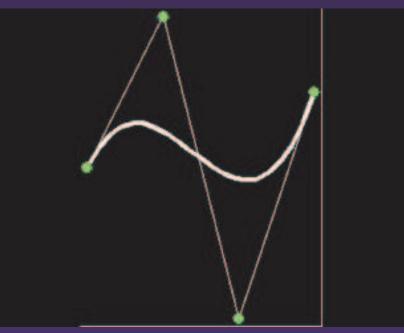
$$\sum_{i=0}^{n} \frac{n!}{(n-i)!!} (1-t)^{n-i} t^{i} = ((1-t)+t)^{n-i} t^{i} = ((1-t$$

Geometric Properties of Bernstein Polynomials $F(t) = \sum_{i=0}^{n} b_i \frac{n!}{(n-i)!i!} (1-t)^{n-i} t^i$ Interpolates its end-points $F(\overline{0}) = b_0$ $F(1) = \overline{b_n}$ End-point derivatives given by differences $F'(0) = n(b_1 - b_0)$ $F'(1) = n(b_n - b_{n-1})$

Bezier Curves

Parametric curves defined by Bernstein polynomials

$$(x(t), y(t)) = \sum_{i=0}^{n} (x_i, y_i) \frac{n!}{(n-i)!!} (1-t)^{n-i} t^{i}$$



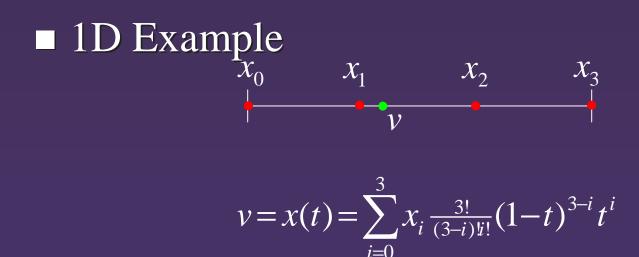
The Tensor Product Operation

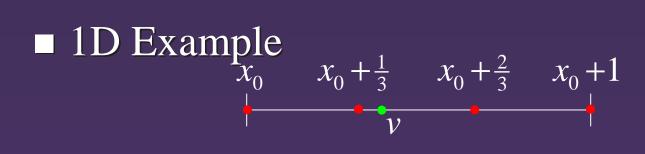
$$i=0 j=0 j=0$$

$$p(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} (x_{i,j}, y_{i,j}) B_i(u) B_j(v)$$

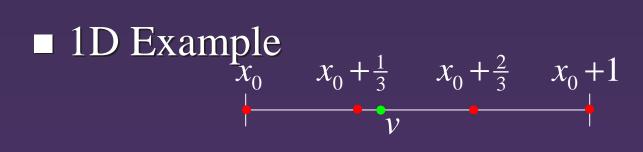
 $x_{j}(u) = \sum_{i=1}^{n} x_{i,j} B_{i}(u)$ $y_{i}(v) = \sum_{i=1}^{n} y_{i,j} B_{j}(v)$

V	(1-u)v	uv
(1-v)	(1-u)(1-v)	<i>u</i> (1– <i>v</i>)
	(1-u)	U

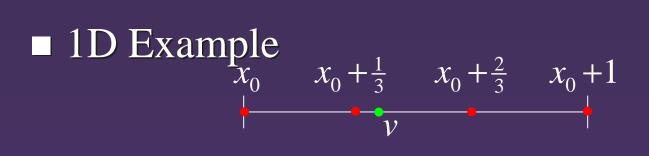




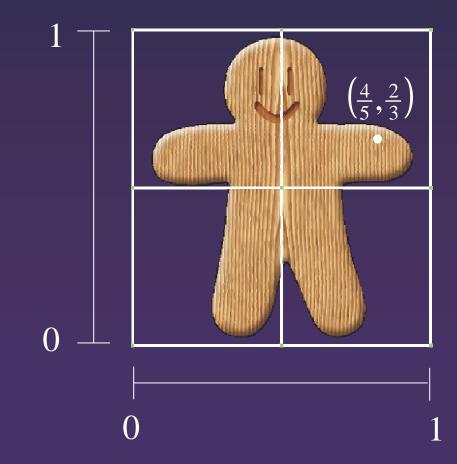
$$v = x(t) = \sum_{i=0}^{3} (x_0 + \frac{i}{3}) \frac{3!}{(3-i)!i!} (1-t)^{3-i} t^i$$

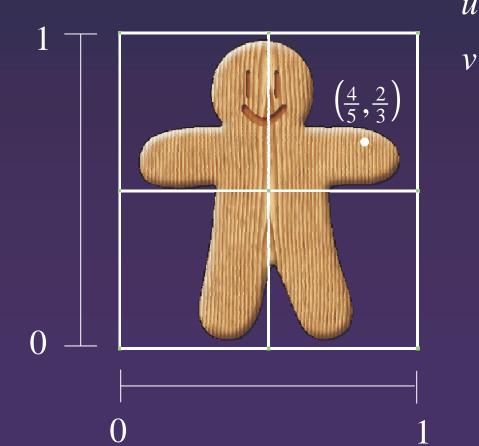


$$v = x(t) = \sum_{i=0}^{3} (x_0 + \frac{i}{3}) \frac{3!}{(3-i)!i!} (1-t)^{3-i} t^i = x_0 + t$$

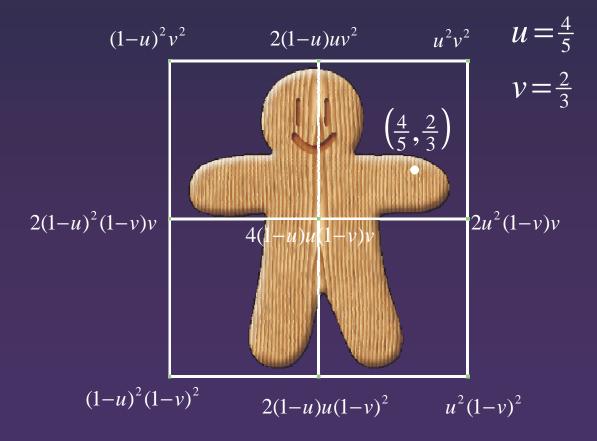


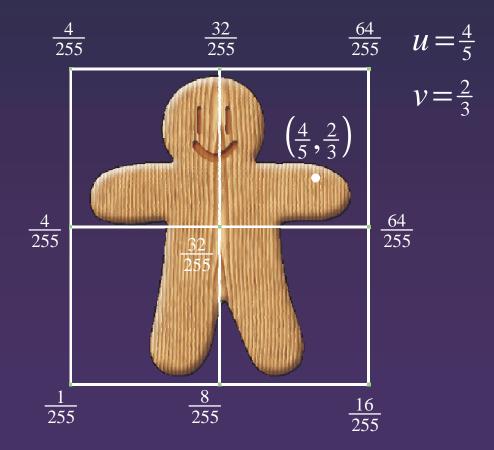
$$v = \sum_{i=0}^{3} x_i \frac{3!}{(3-i)!i!} (1 - (v - x_0))^{3-i} (v - x_0)^i = \sum_{i=0}^{3} x_i \alpha_i$$





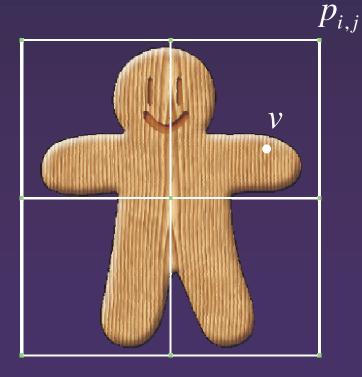
$$u = \frac{1}{5}$$
$$v = \frac{2}{3}$$





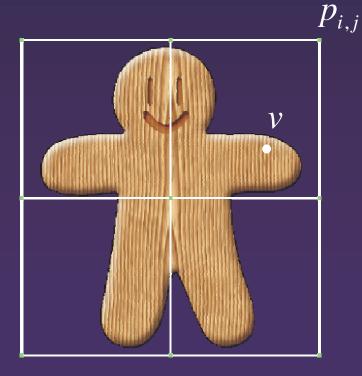
Applying the Deformation

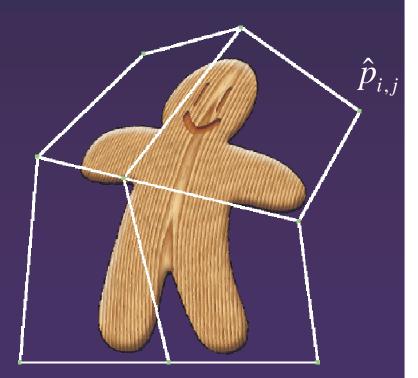
 $v = \sum_{i} \sum_{j} \alpha_{i,j} p_{i,j}$



Applying the Deformation

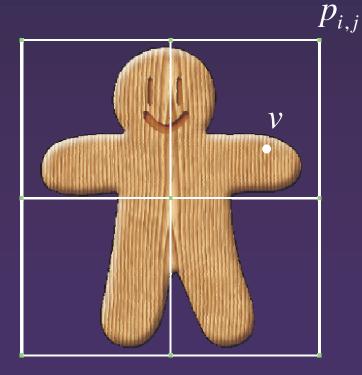
 $v = \sum_{i} \sum_{j} \alpha_{i,j} p_{i,j}$

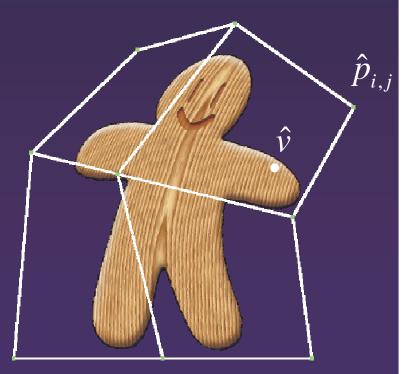


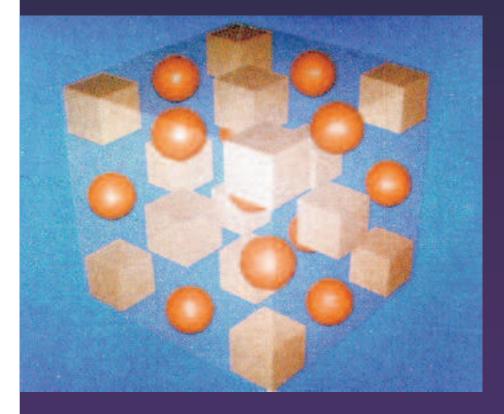


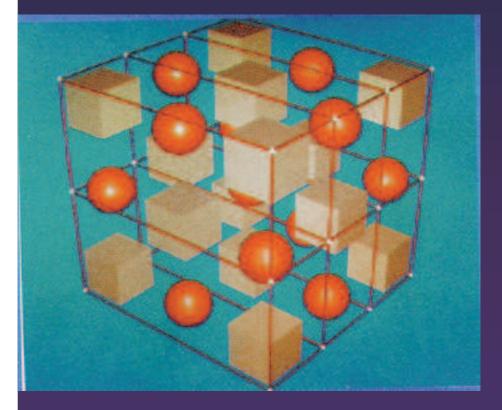
Applying the Deformation

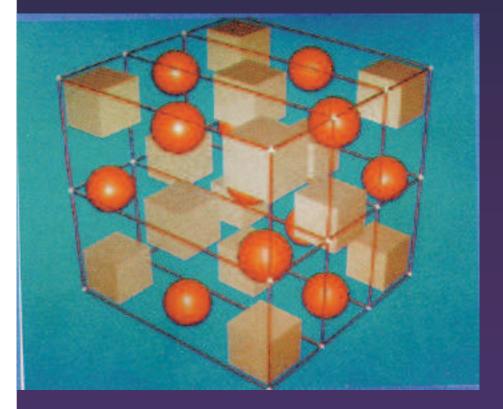
 $v = \sum_{i} \sum_{j} \alpha_{i,j} p_{i,j}$

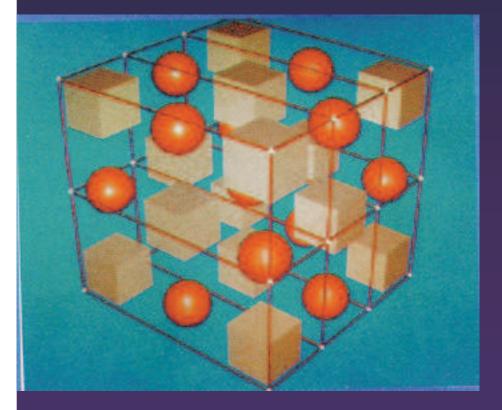


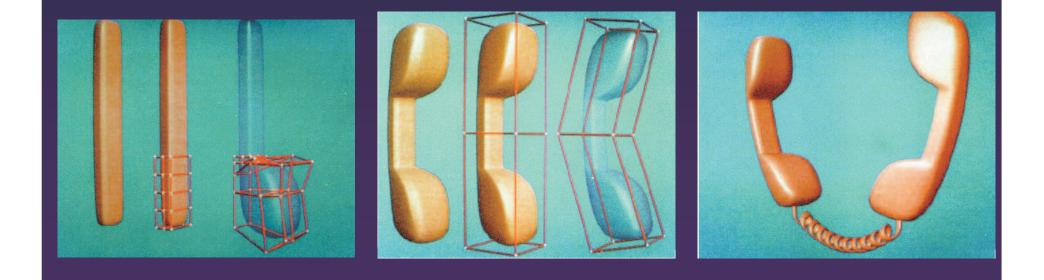


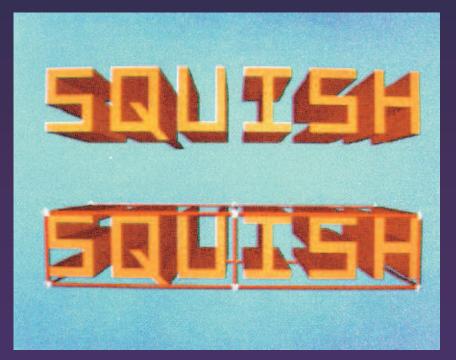


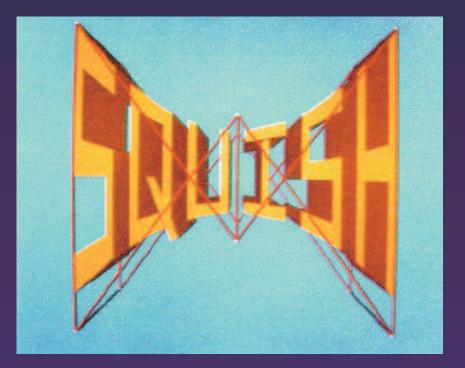




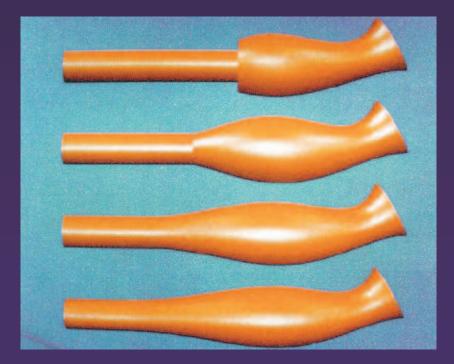






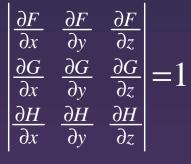


Smoothness of deformation: C⁻¹, C⁰, C¹, C² Creates conditions on Bezier control points



Volume Preservation

■ Ensure that the Jacobian of the FFD is 1 $(\hat{x}, \hat{y}, \hat{z}) = (F(x, y, z), G(x, y, z), H(x, y, z))$





Advantages

Smooth deformations of arbitrary shapes
Local control of deformation
Computing the deformations is easy
Deformations are very fast

Disadvantages

Must use cubical cells for deformation
Restricted to uniform grid
Space warping

Deformations do not take into account structure of surface

May need many FFD's to achieve a simple deformation

Summary

Widely used deformation technique
Fast, easy to compute
Some control over volume preservation
Controllable degrees of smoothness

Uniform grids are restrictive