Free-Form Deformation of
Solid Geometric Models

Scott Schaefer
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Deformation Applications
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Challenges in Deformation

m Large meshes millions of polygons

m Need efficient technigues for computing and
specifying the deformation

Digital Michelangelo Project




FFD Contributions

m Smooth deformations of arbitrary shapes
m | ocal control of deformation
m Performing deformation is fast

m Widely used
¢ Game/Movie industry
¢ Part of nearly every 3D modeler




Bernstein Polynomials

m Different polynomial basis
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Properties of Bernstein Polynomials

m All polynomials can be written as Bernstein
polynomials
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Geometric Properties of Bernstein
Polynomials

E(t) :ib' (-t

m Interpolates Its erpoints
F(0) =D, F@)=b,

m Endpoint derivatives given by differences
F'(0) =n(b, —hy,) F'@)=n(b,-b,,)




Bezier Curves

m Parametric curves defined by Bernstein
polynomials
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The Tensor Product Operation
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Free-Form Deformations

m Embed object in uniform grid

m Represent every point in space as a weighted
combination of the control points
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Free-Form Deformations

m Embed object in uniform grid

m Represent every point in space as a weighted
combination of the control points
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Free-Form Deformations

m Embed object in uniform grid

m Represent every point in space as a weighted
combination of the control points
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Free-Form Deformations

m Embed object in uniform grid

m Represent every point in space as a weighted
combination of the control points
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2D Example
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2D Example
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2D Example
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Applying the Deformation
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Applying the Deformation
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Applying the Deformation
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Examples




Examples




Examples

m Smoothness of deformatio€+, C°, Ci, C?
m Creates conditions on Bezier control points




Volume Preservation

m Ensure that thdacobiarof the FFD is 1
(X,¥,2)=(F(xY,2),G(xY,2),H(XY,2))
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Advantages

m Smooth deformations of arbitrary shapes
m Local control of deformation
m Computing the deformation
IS easy
m Deformations are very fast




Disadvantages

m Must use cubical cells for deformation
m Restricted to uniform grid
m Space warping

o Deformations do not take into account
structure of surface

m May need man¥FD’sto achieve a simple
deformation




Summary

m \Widely used deformation technigue

m Fast, easy to compute

m Some control over volume preservation
m Controllable degrees of smoothness

m Uniform grids are restrictive




