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Abstract

In this paper we present a general framework for performing con-
strained mesh deformation tasks with gradient domain techniques.
We present a gradient domain technique that works well with a
wide variety of linear and nonlinear constraints. The constraints
we introduce include the nonlinear volume constraint for volume
preservation, the nonlinear skeleton constraint for maintaining the
rigidity of limb segments of articulated figures, and the projec-
tion constraint for easy manipulation of the mesh without having
to frequently switch between multiple viewpoints. To handle non-
linear constraints, we cast mesh deformation as a nonlinear energy
minimization problem and solve the problem using an iterative al-
gorithm. The main challenges in solving this nonlinear problem
are the slow convergence and numerical instability of the iterative
solver. To address these issues, we develop a subspace technique
that builds a coarse control mesh around the original mesh and
projects the deformation energy and constraints onto the control
mesh vertices using the mean value interpolation. The energy min-
imization is then carried out in the subspace formed by the control
mesh vertices. Running in this subspace, our energy minimization
solver is both fast and stable and it provides interactive responses.
We demonstrate our deformation constraints and subspace defor-
mation technique with a variety of constrained deformation exam-
ples.

Keywords: nonlinear constraints, skeletal control, volume preser-
vation, projection constraint.

1 Introduction

Recent years have witnessed significant progress in gradient-
domain mesh deformation techniques [Sorkine et al. 2004; Yu et al.
2004; Zhou et al. 2005; Lipman et al. 2005; Nealen et al. 2005].
These techniques have several attractive properties, including the
abilities to preserve surface details during deformation and to pro-
duce visually pleasing results by amortizing distortions throughout
the mesh. However, existing gradient-domain techniques are not ef-
fective at performing constrained deformation tasks. For example,
it is desirable to preserve the volume when deforming an incom-
pressible object. Also when working with a digital character, it is
important to maintain the straightness and length of the limbs fol-
lowing the underlying skeleton [Lander 1998]. Unfortunately, all
these are extremely difficult to accomplish with existing gradient
domain techniques.

In this paper we present a general framework for performing con-
strained deformation tasks with gradient domain techniques. We
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Figure 1: Deformation examples generated by our system. The rigidity of

limb segments is maintained by our skeleton constraint, whereas the body

volume is exactly preserved by our volume constraint.

introduce a number of deformation constraints and present a gradi-
ent domain technique that works well with a wide variety of linear
and nonlinear constraints. The constraints we introduce include the
volume constraint for volume preservation, the skeleton constraint
for skeleton-based deformation, and the projection constraint for
easy manipulation of the mesh without frequently switching be-
tween multiple viewpoints. Among these constraints the projection
constraint is linear, whereas the volume and skeleton constraints are
nonlinear.

Nonlinear deformation constraints present special challenges to
gradient domain techniques. Indeed, we are not aware of any work
on gradient domain deformation that involves nonlinear constraints.
The only constraint that has appeared in previous related work is
the position constraint [Sorkine et al. 2004], which is a linear con-
straint. The difficulty with nonlinear constraints is understandable:
most existing gradient domain techniques cast mesh deformation as
a linear least-squares energy minimization problem, and the inclu-
sion of nonlinear constraints would immediately make the problem
nonlinear.

The subspace deformation technique we derive in this work can
handle nonlinear constraints and still achieve interactive perfor-
mance. Our technique casts mesh deformation as a nonlinear least-
squares energy minimization problem and solves the problem us-
ing an iterative algorithm. In theory the nonlinear least squares
formulation allows us to put any nonlinear constraints in the defor-
mation energy. In practice, however, we must carefully select the
constraints that go into the energy if we are to expect a manageable
computational cost for energy minimization. We include a nonlin-
ear constraint in the energy only if the constraint is quasi-linear.
Intuitively, a quasi-linear constraint is one that almost behaves like
a linear constraint. It turns out that many nonlinear constraints in
mesh deformation behave this way. For nonlinear constraints that
are not quasi-linear, we treat them as hard constraints and solve
them using Lagrange multipliers. Because solving hard constraints
with Lagrange multipliers is costly, the number of such constraints
should be kept to a minimum.

Even with a carefully formulated deformation energy and hard
constraints, we still run into serious problems with slow conver-
gence and numerical instability when minimizing the energy using
iterative algorithms. In fact, the stability problem is often so se-



vere that the iterations do not converge. To address this problem,
our technique first builds a coarse control mesh around the orig-
inal mesh. We then project the deformation energy and the hard
constraints onto the control mesh vertices using mean value inter-
polation [Ju et al. 2005; Floater et al. 2005], and perform the en-
ergy minimization in the subspace formed by control mesh vertices.
Since the number of vertices in the control mesh is much smaller
than that of the original mesh, the problem size at each iteration
becomes much smaller in the control mesh subspace. Furthermore,
the smoothness of the mean value coordinates leads to fast and sta-
ble convergence of our iterative algorithm. This is because the mean
value interpolation essentially smoothes out the nonlinearity of the
nonlinear component of the deformation energy and improves the
matrix condition number of the linear component of the energy. De-
formation examples generated by our system are shown in Figure 1.

An additional advantage of our subspace technique is that it
can easily handle real-world mesh output by commercial model-
ers, including meshes having non-manifold features and discon-
nected components. Such meshes are usually troublesome for exist-
ing gradient-domain techniques as they require a “clean” manifold
mesh.

It is important to note that, even without nonlinear constraints,
gradient domain mesh deformation is a nonlinear problem. This is
because local Laplacian coordinates must be transformed accord-
ing to the global orientation of the deformed mesh, and the local
transformations create a nonlinear term in the deformation energy.
Existing techniques convert this nonlinear term into a linear one by
either heuristically approximating [Lipman et al. 2004; Zhou et al.
2005] or linearizing [Sorkine et al. 2004] the local transformations.
The price for employing these heuristically schemes is suboptimal
deformation results. In our work no such approximation and lin-
earization is used and the local transformations are calculated accu-
rately.

2 Previous Work

Mesh Deformation Multi-resolution techniques [Zorin et al. 1997;
Kobbelt et al. 1998; Guskov et al. 1999; Botsch and Kobbelt 2003]
can preserve surface details by decomposing a mesh into several
frequency bands. A deformed mesh is obtained by first manip-
ulating the base mesh and later adding back the high frequency
details as displacement vectors. Because these displacements are
processed independently, these techniques may produce artifacts in
highly deformed regions.

Gradient domain techniques [Alexa 2003; Lipman et al. 2004;
Yu et al. 2004; Sorkine et al. 2004; Zhou et al. 2005; Lipman et al.
2005; Nealen et al. 2005] cast mesh deformation as an energy min-
imization problem. The energy function contains both the term for
detail preservation and the term for position constraints. The detail-
preserving term is nonlinear because it involves both the differen-
tials for local details and the local transformations which are posi-
tion dependent. For computational efficiency, existing techniques
convert this nonlinear term into a linear one by various approxima-
tions including local linearization [Sorkine et al. 2004], interpola-
tion from handles [Zhou et al. 2005], and heuristic reconstruction
[Lipman et al. 2004].

Sheffer et al. [Sheffer and Kraevoy 2004] proposed a rotation
invariant shape representation, called pyramid coordinates, based
on a set of angles and lengths relating a vertex to its immediate
neighbors. Au et al. [Au et al. 2005] proposed to use the curvature
normal of the unknown deformed mesh as the Laplacian differen-
tial coordinates for computing the deformation. Surface details are
preserved by re-scaling the curvature normal to the same length as
the Laplacian coordinates of the original mesh.

Deformation Constraint Mesh deformation by manually manip-
ulating individual vertices is impractical, and various deformation
handles and constraints have been proposed [Milliron et al. 2002].

By fitting some kind of control handles to the original mesh, the
user only needs to manipulate the control handles and the mesh
will deform accordingly. Common deformation handles include the
control grids in free-form deformation (FFD) [Sederberg and Parry
1986; Coquillart 1990; MacCracken and Joy 1996], control curves
[Singh and Fiume 1998], and control points [Hsu et al. 1992].

For animating articulated figures, a common control mechanism
is skeleton structures. Proper deformations could be achieved by
first configuring the skeletons followed by skin deformation con-
forming to the underlying skeletons. However, it can be challeng-
ing to perform the follow-up skin deformation, as various artifacts
could happen such as joint collapsing or candy-wrapping effects
[Kavan and Zara 2005]. These artifacts can be greatly reduced by
accurate anatomical simulation [Wilhelms and Gelder 1997] or by
example-based synthesis [Lewis et al. 2000; Kry et al. 2002; Sum-
ner et al. 2005]. In particular, [Sumner et al. 2005] is robust enough
to be applied to non-manifold or disconnected mesh surfaces.

Volume preservation is another common constraint. [Rappaport
et al. 1996] introduces tri-variate tensor product free-form solids
with the volume-preserving property. [Hirota et al. 1999] preserves
volumes via a multi-level lattice representation. These techniques
do not take into account preserving surface details. [Zhou et al.
2005] uses the volumetric graph Laplacian to preserve surface de-
tails while minimizing apparent volume changes. However, this
technique cannot preserve volumes exactly.

3 Overview

A mesh is represented as a tuple (K,X), where K encodes
the connectivity of the simplicial complex containing the vertices,
edges, and triangles, andX = (x1, . . . ,xN )t

, xi ∈ R3, represents
the positions of mesh vertices.

Deformation with Nonlinear Constraints Using the Laplacian
coordinates, we can formulate mesh deformation as solving the fol-
lowing unconstrained energy minimization problem

minimize
1

2

m
∑

i=1

||fi(X)||2,

where f1(X) = LX−δ̂(X) is for reconstructingX from its Lapla-

cian coordinates δ̂(X) [Sorkine et al. 2004] and L is the Laplacian
operator matrix. fi(X), i > 1, represent various deformation con-
straints. With nonlinear constraints the above is a nonlinear least
squares problem [Madsen et al. 2004].

For convenience we regard LX = δ̂(X) as a constraint as well
and call it the Laplacian constraint. Unlike most existing tech-

niques, we do not convert LX − δ̂(X) to a linear function. Instead

we derive a novel non-linear formulation of δ̂(X) for exact evalu-

ation of δ̂(X). Our formulation of δ̂(X) is based on the cotangent
form introduced in [Desbrun et al. 1999].

We divide the set of constraints into two classes, soft and hard
constraints. A soft constraint is included as a term in the deforma-
tion energy, whereas a hard constraint is handled using Lagrange
multipliers [Madsen et al. 2004]. With the hard constraints our en-
ergy minimization becomes a constrained nonlinear least squares
problem, which is usually solved using iterative techniques. In or-
der to ensure that this nonlinear problem can be efficiently and ro-
bustly solved, we need to carefully select soft constraints and re-
duce the number of hard constraints.

We allow a nonlinear constraint to be a soft constraint only if
it is quasi-linear. Intuitively a quasi-linear constraint is in some
sense “almost linear”: it can be written as AX = b(X), where
A is a constant matrix and b(X) is a vector function whose Jaco-
bian is “very small” (to be defined more precisely in Section 4.5).
The Laplacian and skeleton constraints are examples of quasi-linear
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Figure 2: Volume change plots. Left: the original + control meshes. Right:

the volume change plots during a typical user interaction. Note that the

volume is preserved on the original mesh, not on the coarse control mesh.

constraints. Since all nonlinear constraints in the energy function
are quasi-linear, our energy minimization problem can be written
as

minimize ||LX − b(X)||2 subject to g(X) = 0, (1)

where L is a constant matrix and g(X) = 0 represents all hard
constraints.

Because solving hard constraints with Lagrange multipliers is
costly, we save the hard constraints for those with low-dimensional
restriction (such as the volume constraint) and nonlinear constraints
that are not quasi-linear.

In our current system, the soft constraints include a Laplacian
constraint for retaining surface details, a skeleton constraint for
maintaining rigidity, and a position constraint for user manipula-
tion in 3D object space; the hard constraints include a volume con-
straint for preserving volumes and a projection constraint for user
manipulation in 2D screen space.

Subspace Deformation When solving Equation 1 with iterative
methods we run into serious problems with slow convergence and
numerical instability. Often the stability problem is so severe that
the iterations do not converge. Through theoretical analysis and
experiments we found that the two dominating causes for the in-
stability are the large condition number κ(LtL) of the matrix LtL
and the nonlinearity of b(X). Our subspace deformation technique
is designed to address these issues.

The subspace method first builds a coarse control mesh around
the original mesh (e.g., Figure 2, Figure 10 and Figure 15). The de-
formation energy and the hard constraints are then projected onto
the control mesh vertices using mean value interpolation [Ju et al.
2005; Floater et al. 2005]. Let the control mesh vertices P be re-
lated to original mesh vertices X through X = WP . After projec-
tion we perform energy minimization in the control mesh subspace
as follows:

minimize ||(LW )P − b(WP )||2

subject to g(WP ) = 0. (2)

Since the number of vertices in P is much smaller than the number
of vertices in X , the linear systems we solve at each iteration are
relatively small. Furthermore, using the smoothness of the mean
value coordinates we can show that, for a properly constructed con-
trol mesh, κ((LW )t(LW )) has magnitudes smaller than κ(LtL)
and the nonlinearity of b(WP ) is significantly reduced from that of
b(X). Our experiments indicate that the subspace method provides
a numerically robust scheme for solving the deformation problem
in Equation 1.

Most importantly, our technique does not simply apply con-
straints and solve the deformation on the coarse mesh P and inter-
polate back the results to the original mesh X; this naive approach
would certainly not preserve mesh properties on the original mesh.
Instead, as shown in Equation 2, we apply all constraints to the
original mesh X and we only project the variables of the resulting
constraints equations into the subspace formed by the coarse mesh
P . Specifically, in Equation 2, our Lagrange term g(WP ) = 0 al-
lows us to satisfy our hard constraints exactly in the original mesh

X , even though the equation variable is expressed in P. Similarly,
the LWP − b(WP ) term allows us to enforce our soft constraints
on the original mesh. For example, our volume constraint encoded
in the Lagrangian term allows us to preserve volume in the original
mesh, even though volume in the coarse control mesh is not pre-
served, as demonstrated in Figure 2. A more complex example for
preserving both volume and surface details is shown in Figure 9.

4 Deformation Energy and Constraints

In this section we present our deformation energy and introduce
several linear and nonlinear constraints. First we describe a novel
formulation of the energy for reconstructing mesh vertex positions
from the Laplacian coordinates. This formulation allows us to prop-
erly handle local transformations without resorting to heuristic ap-
proximations. Then we introduce two nonlinear deformation con-
straints: the skeleton constraint and the volume constraint. We also
describe the projection constraint, which we found extremely handy
for user interaction. Finally, we formulate the mesh deformation as
a constrained nonlinear least-squares problem.

4.1 Laplacian Reconstruction

An essential step of gradient-domain deformation is the recon-
struction of the mesh vertex positionsX from their Laplacian coor-

dinates δ̂ = δ̂(X). This reconstruction is done in the least-squares

sense by imposing the Laplacian constraint LX = δ̂(X). As men-

tioned, this is a nonlinear constraint because δ̂(X) includes the ef-
fects of local transformations.

We present a non-linear formulation of the Laplacian coordinates

that allows us to evaluate δ̂(X) exactly rather than through approx-

imation. Our formulation of δ̂(X) is based on the cotangent form
as introduced in [Desbrun et al. 1999], from which we make use of
the following observations: a) the Laplacian is a discrete approxi-
mation of the curvature normal, and b) the cotangent form Lapla-
cian lies exactly in the linear space spanned by the normals of the
incident triangles.

Consider an inner vertex xi on the original mesh.
Let xi,1, . . . ,xi,ni

be the adjacent vertices and
{Tij = △(xi,xi,j−1,xi,j)}

ni

j=1
be the incident triangles

(x0 = xi,ni
for notational convenience). From observation b),

there exists a set of coefficients µij such that

δi =

ni
∑

j=1

µij ((xi,j−1 − xi) ⊗ (xi,j − xi)) (3)

where δi is the differential coordinate of vertex xi on the original
mesh, ⊗ denotes the cross product of two vectors in R3, and the
term (xi,j−1 − xi) ⊗ (xi,j − xi) indicates the normal of triangle
Tij . Note that {µij} remains invariant with respect to rigid rotation
of the mesh.

We now describe how to solve the set of coefficients µij for δi.
Let Ai be the 3× ni matrix whose j-th column is (xi,j−1 − xi)⊗
(xi,j −xi), and let µi be (µi,1, . . . , µi,ni

)t. Then δi = Aiµi. This
system is under-constrained when there are more than three incident
triangles. One way to solve µi is to computeA+

i , the pseudo inverse
of Ai, through singular value decomposition (SVD) and set µi =
A+

i δi. This is equivalent to finding a solution of Equation 3 that
minimizes ||µi||.

Let di(X) =
∑

j
µij ((xi,j−1 − xi) ⊗ (xi,j − xi)) be our

new representation of Laplacian. Since {µij} remains constant, it
is easy to show that di(X) = Riδi when the 1-ring neighborhood
undergoes a local rotation Ri. Hence, di(X) provides a rotation-
invariant representation for the Laplacian differential coordinates
and the deformed mesh should best maintain this invariant. Let
γ̂i = ||δi|| and γi = ||di(X)||. When the mesh is deformed, we



Figure 3: Deformation with the skeleton constraint. From left to right: the

un-deformed horse fore-leg, virtual skeleton (red segments), and deforma-

tion with and without the skeleton constraint.

constrain the target differential coordinate to the direction of di(X)
while keeping its original length, i.e.,

δ̂i(X) =
γ̂i

γi
di(X). (4)

Note that even though our Laplacian formulation bears resem-
blance to [Sheffer and Kraevoy 2004] which is also nonlinear,
they are mathematically different; in particular, we use cotangent
weights while [Sheffer and Kraevoy 2004] used 2D mean-value
weights. The major reason we choose a cotangent form over other
representations is due to its curvature approximation property [Des-
brun et al. 1999].

4.2 Skeleton Constraint

In deforming articulated figures, it is a common requirement to
constrain parts of the model to be unbendable. For example, it is de-
sirable that the fore-legs of a horse as illustrated in Figure 3 remain
rigid. This effect can be achieved by skeleton-based deformation,
which is widely used by artists [Lander 1998]. To enable skeleton-
based deformation with gradient-domain techniques, we introduce
a new type of nonlinear constraint, the skeleton constraint.

Let us illustrate the skeleton constraint with a simple scenario.
As shown in Figure 4, suppose we have part of the unbendable mesh
(circled by a dashed curve) and we would like to add a skeleton

segment. The user simply specifies a virtual skeleton segment ab,
and along it our algorithm automatically distributes a set of sample
points {si}

r
i=0, where s0 = a and sr = b. The value of r is

determined such that the distance between two adjacent samples
equals the average edge length of the unbendable part.

During deformation, we would like to preserve both the straight-

ness and the length, ρ̂, of ab:

{

(si − si−1) − (b − a) /r = 0
i = 1, 2, . . . , r,

||b − a|| = ρ̂.
(5)

We represent each sample point (including a and b) as a linear
combination of the mesh vertices: si =

∑

j
kijxj , where kij are

some constant coefficients. Substituting si in Equation 5 with these
linear representations, we have the following constraints:

{

ΓX = 0
||ΘX|| = ρ̂

(6)

where Γ is a constant r × n matrix with (Γ)ij = (kij − ki−1,j) −
1

r
(krj − k0j), and Θ is a row vector with (Θ)j = krj − k0j .

The coefficients kij are computed as the mean value coordinates
[Ju et al. 2005] with respect to the constrained part of the mesh.
Since [Ju et al. 2005] requires a closed mesh, we close the two open
ends of the constrained segment by adding as two virtual vertices
(c1 and c2 in Figure 4) the centroids of the boundary curves of the
open ends.

Figure 3 demonstrates the importance of the skeleton constraint
for maintaining rigid body parts. As shown, a horse leg deformed
without any skeleton constraint looks quite unnatural.

 

Eye 

User stroke on  
the screen 

Mesh 

a bis
1+isK K1c

2c

Boundary 
curve 

Boundary 
curve 

 

Figure 4: Skeleton constraint specification. Line segment ab: constraint

bone segment. Dark-green squares: pixels under the user stroke. Blue seg-

ments: ray intersections with the mesh. Light-green dots: virtual vertices to

close the two open mesh boundaries.

Figure 5: Deformation with (middle) and without (right) the volume con-

straint. The original model is on the left.

Skeleton Specification Here, we describe the implementation de-
tails for specifying skeleton constraints on the unbendable mesh
part. As shown in Figure 4, the user simply draws a stroke over
the target region (dark-green) and our algorithm will automatically
construct the skeleton segment and the associated constrained re-
gion (gray), as described below.

For each user stroke pixel (dark-green), we construct a ray con-
necting the stroke pixel and the eye point. We then compute the
first two intersections (blue) of each such stroke ray with the mesh;
essentially these two intersections reside on the front and back sides

of the target mesh segment. We construct ab as the line segment
approximately in the middle of the front and back intersections via
a simple least squares fitting.

To determine the constrained region, we first place a plane per-

pendicular to ab at each of its end vertices. These two planes serve
as boundary planes for the constrained region. We then determine
the middle portion of the constrained region by growing outward
the intersection triangles (blue) computed in the previous step until
there is no gap between them.

4.3 Volume Constraint

We introduce a new volume constraint to exactly preserve the
total volume of the mesh. In the following, we assume the mesh is
a closed 2D manifold.

The total signed volume of a mesh can be computed using their
vertex positions: ψ(X) = 1

6

∑

Tijk
(xi ⊗ xj) · xk, where each

Tijk ∈ K is a triangle formed by vertices i, j, and k. Judging by
this, our volume constraint can be easily represented by

ψ(X) = v̂ (7)

where v̂ denotes the total volume of the original un-deformed mesh.

We handle Equation 7 as a hard constraint in our system. Due to
the use of hard constraints, our technique is able to preserve volume
exactly; if we were to use a soft constraint as in [Zhou et al. 2005],
we could only reduce apparent volume change but not exactly pre-
serve the volume.

Figure 5 demonstrates our volume preserving deformation ef-
fects on a bird model; notice that our technique preserves volume
on the original mesh exactly, as illustrated in Figure 2. Also, even
though Figure 5 only presents an example for whole-mesh volume
preservation, our volume constraints can be applied to local body
parts as well. For example, by incorporating only triangles of a
human’s forearm in Equation 7, we could preserve volume for this
specific body part.



4.4 Projection Constraint

The projection constraint is similar to the position constraint for
the purpose of user manipulation, but is imposed in the 2D screen
space rather than in 3D. The position constraint, which enforces a
vertex to move to a specific 3D position, is useful when the tar-
get 3D position is given. During a typical interactive deformation
session through a 2D GUI (graphic user interface), the target 3D
position is usually not given and the user often needs to control the
shape of the mesh by dragging a surface point to a desired 2D loca-
tion on the screen. This is when the projection constraint becomes
most useful.
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Figure 6: Projection constraint. The projection of a 3D point P is con-

strained to (wx, wy) but free to move long the ray connecting the eye point

and (wx, wy).

Let p = QpX be an arbitrary point on the mesh (not necessarily
a vertex), written as a linear combination of mesh vertex positions
X via a constant matrix Qp. The projection constraint requires that
p move to a new 3D position whose 2D projection is located at a
user-specified target position (wx, wy) on the screen (see Figure 6).
LetM be the model view matrix which maps a point from the object
space into the eye space, and f be the focal length of the viewing
camera. The projection of p in the window’s coordinate system can
be computed as

(

f
Mr

xp +M t
x

Mr
z p +M t

z
, f

Mr
yp +M t

y

Mr
z p +M t

z

)

(8)

where the superscripts in Mr and M t indicate the rotational and
translational parts of M , and the subscripts in Mx,y,z indicate the
corresponding rows for the individual components. Since the target
position in the screen space is (wx, wy), the above equation would
lead to

(fMr
x − wxM

r
z )QpX = −fM t

x + wxM
t
z,

(

fMr
y − wyM

r
z

)

QpX = −fM t
y + wyM

t
z.

We can rewrite the above two equations as a single constraint:

ΩX = ω̂, (9)

where Ω is a constant 2 × 3n matrix and ŵ is a constant column
vector.

Figure 7 shows an example of typical user interactions using the
projection constraint. For the dinosaur model shown in Figure 7(a),
the user simply drags a foot, the tail, and the head in the front view
and obtains the result shown in Figure 7(b). For evaluating the de-
formation, we show Figure 7(a) and Figure 7(b) from a side view
in Figure 7(c) and (d). We can see that the deformation result looks
fairly natural. The projection constraint automatically adjusts the
depth value of the manipulated foot, head and tail for better pre-
serving the shape and surface details.

4.5 Constrained Nonlinear Least Squares

Now we are ready to formulate our nonlinear least-squares prob-
lem in Equation 1 using the traditional position constraint ΦX =

V̂ , as well the Laplacian, skeleton, volume, and projection con-
straints we introduced above.

(a) (b) (c) (d)

Figure 7: User interaction via our projection constraint. From the origi-

nal model view in (a), the user drags the dinosaur head and tail into the

new pose shown in (b). Our projection constraints will automatically com-

pute an optimal deformation, as illustrated from another view of the same

deformation, where (c) is a side view of (a), and (d) is a side view of (b).

Following the discussion in Section 3, we classify volume and
projection constraints as hard constraints since they have a low-
dimensional restriction. For the projection constraint, even though
it is linear, its coefficient matrix Ω depends on (wx, wy), which
changes whenever the user moves the target position. If we treat
the projection constraint as a soft constraint, then Ω will be part of
L which prevents us from pre-factorizing LtL for acceleration, as
discussed in Section 5. For this reason, we handle the projection
constraint as a hard constraint.

For the Laplacian, skeleton and position constraints, since their
potential number of equations are large, it would be expensive to
handle them as hard constraints in Equation 1. The position con-
straint can be easily treated as a soft constraint. As for the Lapla-
cian and skeleton constraints, it turns out that they are quasi-linear
constraints. A quasi-linear constraint is one that can be written as
AX = c(X), where A is a constant matrix and c(X) is a vector
function whose Jacobian is small, i.e., ||Jc|| ≪ ||A||.

Summarizing the above discussions, we have the following ma-
trices and vector functions for Equation 1:

L=







L
Φ
Γ
Θ






, b(X)=







δ̂(X)

V̂
0

ρ̂ ΘX
||ΘX||






and g(X)=

(

ΩX − ω̂
ψ(X) − v̂

)

,

where ΦX = V̂ indicates the position constraint and the other sym-
bols correspond to constraints defined earlier in this section.

Note that we represent the skeleton length constraint as ΘX =
ρ̂(ΘX/||ΘX||) even though it is equivalent to the simpler form
||ΘX|| = ρ̂. The reason for this unusual representation is that it
maintains the block structure of matrix L, such that we can solve
the deformation by n × n, instead of 3n × 3n, linear systems for
the x, y, z components in Equation 12 and Equation 13.

5 Subspace Deformation Solver

We present a subspace iterative solver for mesh deformation as
formulated in Equation 1. The ability to effectively combine the
energy minimization for mesh deformation with the subspace re-
duction technique is the key to the development of our fast and high
quality deformation algorithm. In addition to this algorithmic de-
velopment and its implementation, we provide some analysis of one
of the most important aspects of this subspace reduction technique
— the improvement of convergence and numerical stability.

We first give an iterative algorithm based on the Gauss-Newton
method in Section 5.1, and analyze its numerical stability in Sec-
tions 5.2 and 5.3. We then apply a subspace technique to develop a
robust deformation solver.



5.1 The Gauss-Newton Formulation

Following the Gauss-Newton method [Steihaug 1995], we lin-
earize f(X) ≡ LX − b(X) at each iteration as

f(X + h) ≈ l(h) ≡ f(X) + (L− Jb(X))h, (10)

where Jb(X) is the Jacobian of b. At each iteration we solve

minimize
1

2
||l(h)||2 subject to g(X + h) = 0. (11)

By locally linearizing g(X + h) ≈ g(X) + Jg(X)h and applying
Lagrange multipliers [Madsen et al. 2004] with Newton’s method,
we can express the local update that minimizes Equation 11 as:

h = −(J t
fJf )−1

(

J t
ff + J t

gλ
)

λ = −(Jg(J t
fJf )−1J t

g)−1
(

g − Jg(J t
fJf )−1J t

ff
) (12)

where Jf ≡ Jf (X) = L − Jb(X) and Jg ≡ Jg(X). Thus,
starting from an initial X0, we can solve Equation 1 iteratively by
computing the update hk from Equation 12 (assumingX = Xk−1)
and then setting Xk = Xk−1 + αhk, where α is a small constant
that can be found by line search.

5.2 Numerical Considerations

Each Gauss-Newton step requires the calculation of:

a. Jb(X), Jg(X), f(X), and g(X), and

b. (J t
fJf )−1, Jg(J t

fJf )−1J t
g and Jg(J t

fJf )−1J t
ff(X).

Since we only use a small number of hard constraints, the domi-
nant computation of a) is the formation of Jb. Note that each vol-
ume and projection constraint adds one and two hard constraints,
respectively. With s hard constraints and a mesh with n vertices,
Jg(X) is an s × n matrix and Jg(J t

fJf )−1J t
g is an s × s matrix.

(J t
fJf )−1J t

g and (J t
fJf )−1J t

ff(X) can be formed by solving s+1

linear systems with matrix (J t
fJf ) and hence Equation 12 calls for

the solution of (s+ 2) such linear systems.

We have (J t
fJf ) = LtL − (LtJb + J t

bL − J t
bJb), and (LtL)

stays constant during the deformation. When the condition number
κ = κ((LtL)−1(J t

fJf )) is small, which is the case if ||Jb|| is much
smaller than ||L||, we can pre-compute the Cholesky factorization
of (LtL) and apply the conjugate gradient (CG) method with (LtL)
as a preconditioner to solve the linear systems. CG terminates with

an ǫ-precise solution in O(κ1/2 log(1/ǫ)) iterations.

We can further eliminate the computation of Jb(X), a costly step
for large meshes, when ||Jb|| ≪ ||L||, by simplifying Equation 10
as l(h) ≡ f(X) + (L − Jb(X))h ≈ f(X) + Lh. The result-
ing Gauss-Newton method is commonly referred to as the inexact
Gauss-Newton method in the literature [Steihaug 1995] and has the
same updates as Equation 12, but with Jf replaced by L.

We can use the pre-computed factorization of LtL to directly
solve all the linear systems defined by (LtL). Thus we only have
to factorize (LtL) once for a given set of soft constraints.

5.3 Convergence and Stability

Even for medium size meshes the above methods sometimes ex-
perience slow convergence and instability. When the mesh reso-
lution increases, the instability could prevent the iterations from
converging unless much smaller steps are taken. In addition, it be-
comes more costly for each iteration due to the increased sizes of
L, Jb, Jf and Jg .

We analyze the factors that affect convergence. Following [Stei-
haug 1995], the local convergence of the Gauss-Newton method
depends on the spectral radius of

−
(

J t
f (X∗)Jf (X∗)

)−1

m
∑

i=1

Hi(X
∗)fi(X

∗),

|X| |P |
κ(W tLtLW )

κ(LtL)

||Jt
b

Jb||

||LtL||

||W tJt
b

JbW ||

||W tLtLW ||

Dino. 10k 159 5.3e-7 1.6e-1 1.6e-4

Armad. 30k 220 2.9e-7 1.5e-1 7.5e-5

Table 1: Comparisons of condition numbers and Jacobian magnitudes.

whereX∗ is a nearby local minimum of ||f(X)||,Hi is the Hessian

of the ith component fi of f . Thus, numerical stability depends
on two key factors: the finite condition number (the ratio of the
largest and the smallest non-zero eigenvalues) κ(J t

f (X∗)Jf (X∗))

and the nonlinearity
∑m

i=1
Hi(X

∗)fi(X
∗) of f(X). Note that the

nonlinearity of f(X) is that of b(X).

The nonlinearity of b(X) also limits the step size. As shown in
[Kaporin and Axelsson 1994] the limiting step size from a point X
along the normalized direction h is the largest positive number δ
satisfying

2||f(X)|| ·

∥

∥

∥

∥

∥

δ2
m

∑

i=1

htHi(X
∗)h

∥

∥

∥

∥

∥

≤ δ(1 − δ)||Jb(X)h||.

Moreover, the accuracy of the inexact Gauss-Newton method de-
pends on κ(LtL). Suppose it takes k steps to converge, then
we have (LtL)Xk = b(Xk−1). The backward-error due to
dropping Jb(Xk−1) is ||(LtL)−1Jb(Xk−1)(Xk − Xk−1)|| ≤
κ(LtL)||Jb(Xk−1)(Xk − Xk−1)||, which could be significant if
κ(LtL) is large.

5.4 Subspace Deformation

Now we present our subspace technique for robust mesh defor-
mation. This technique significantly reduces the size of the linear
systems at each iteration. More importantly, it enables us to im-
prove the numerical stability of our non-linear deformation algo-
rithm. The design of the subspace deformation solver is based on
the following observations: (1) the key in gradient domain deforma-
tion is to deform the low frequency coarse shape while maximally
preserving the high frequency features such as surface and skeleton
details. Thus, in the view of spectral analysis via singular value
decomposition, the deformation is mostly performed in a subspace
defined by low frequency features. (2) If the subspace deformation
formulation is robust and only involves a small number of variables,
then the (inexact) Gauss-Newton method can converge rapidly and
hence we can meet the interactive deformation requirements.

Thus, the first essential step in subspace deformation is to deter-
mine a quality subspace and its parametrization. Ideally, one can
use spectral analysis to capture the subspace of low frequency fea-
tures: Consider a deformation X = X0 + D, where X0 denotes
the original mesh position and D is the desired displacement of the
deformation. Let L be the Laplacian matrix. Then the changes in
the differential coordinates is LX − LX0 = LD. Let L = USV t

be the SVD of L, and D =
∑

j
djVj be an expansion using the

singular vectors Vj in V . Then ||LD||2 =
∑

j
(djsj)

2, where sj

are the jth singular values. In order to preserve the high frequency
surface details, D should lie in a subspace formed by the set of
singular vectors with small singular values. So one can form a re-
duced subspace in which energy minimization is performed in the
subspace formed by the singular vectors in V with small singular
values.

In practice, it could be expensive to compute the SVD of L for
large meshes. We have found that mesh simplification provides an
efficient alternative for subspace formation: We achieve these two
conditions above by creating a coarse control mesh that surrounds
the original one and reasonably approximates the shape of the orig-
inal mesh, and using the numerically stable mean value interpola-
tion [Ju et al. 2005] to project the high frequency details onto the
control mesh to constrain the deformation of control vertices in the
low-frequency subspace.



Figure 8: Stability comparison betweed the original (top) and subspace

(bottom) solvers. The thin-blue curves indicate step size while the thick-

red curves indicate energy. The green bars indicate the locations of the

deformation poses.

We build the coarse control mesh by first applying the progres-
sive convex hull construction algorithm in [Sander et al. 2000]. If
the original mesh is closed, the resulting control mesh is also closed
and contains the original one in its interior. Otherwise, in order to
form a closed control mesh, we then fill in the open regions of the
coarse mesh with extra triangles. Since the mean value coordinate
is proportional to the distance reciprocal, we shift the control ver-
tices along the normal direction by some user-specified offset to
achieve a smooth transformation between the control mesh and the
original mesh. Finally, we can also adjust some control vertices for
more effective deformation control.

Let P be the vectors representing the locations of the control
mesh vertices. Let W be the matrix that interpolates the original
mesh from the control mesh, i.e., X = WP , using the mean value
interpolation method [Ju et al. 2005]. The deformation energy and
constraints from the original mesh are then projected to the control
mesh by substituting X = WP in Equation 1. We thus formulate
the deformation in terms of subspace vertices P as in Equation 2.
We apply the (inexact) Gauss-Newton method to solve Equation 2.
For example, the update of the inexact Gauss-Newton method is

hP = −
(

W tLtLW
)−1 (

W tLtf + (JgW )tλ
)

λP = −
(

(JgW )(W tLtLW )−1(JgW )t
)−1

(

g − (JgW )(W tLtLW )−1W tLtf
)

.

(13)

The mean value interpolation is well-defined and smooth for all
points. By its linear precision property, X = WP holds before de-
formation and a smooth change of P induces a smooth change ofX
during deformation.

This subspace deformation is more robust than that in Equa-
tion 12 as κ(W tLtLW ) is much smaller than κ(LtL), as shown
in Table 1. Note that κ(LtL) is dominated by κ(LtL), where
L is the surface Laplacian matrix. We can analyze this improve-
ment in two stages. Let L′ be the surface Laplacian matrix of the
control meshes. First, we note that κ((L′)tL′) is much smaller
than κ(LtL). Suppose θmin and θ′min are respectively the small-
est angle in the original and control mesh. Following [Shewchuk
2002], κ(LtL) and κ((L′)tL′) are respectively proportional to
(|X|/ sin(θmin))2 and (|P |/ sin(θ′min))2. As |P | is much smaller
than |X| and θ′min is usually better than θmin, thus κ((L′)tL′) usu-

Figure 9: Comparison of naive interpolation and our subspace method.

Left: deformation result generated by naive interpolation, as described in

Section 3. Notice the unnatural volume shrinkage around the head and neck.

Right: deformation result by our subspace method.

original + control meshes

deformation 1
deformation 2

Figure 10: Multi-component mesh deformation. The DNA sequence con-

tains 32 disjointed components indicated by different colors.

ally is much smaller than κ(LtL). Secondly, we found in experi-
ments that κ(W tLtLW ) is usually smaller than κ((L′)tL′) when
the coarse mesh reasonably approximates the shape of the original
mesh. Therefore, we have κ(W tLtLW ) ≪ κ(LtL).

Note that the rows of W are the mean value coordinates of the
original mesh vertices in terms of the control vertices. Geometri-
cally, the mean value contribution of a point p on the control surface
to a mesh vertex x is proportional to 1/||p− x||. Since the control
surface has a reasonable distance to the original mesh, the mean
value coordinates of nearby mesh vertices are smoothly distributed.
The continuous transformation of the control mesh also greatly re-
stricts and reduces the non-linearity of the quasi-linear constraints
LX = b(X). As confirmed by our experiments shown in Table 1,

||W tJ t
bJbW || ≪ ||W tLtLW || (Note that LX = δ̂(X) represents

the dominating quasi-linear constraint).

In Figure 8, we show an example comparing the stabilities of a
direct solver and our subspace solver. As we can see, the subspace
solver converges much faster than the direct solver.

As discussed in Section 3, our subspace solver preserves con-
straints on the original, instead of the control, mesh. Figure 9
demonstrates a complex example for preserving both volume and
surface details; note that our subspace technique generates superior
deformation results than naive interpolation.

A bonus of using a control mesh in the subspace solver is that
it allows us to easily handle non-manifold surfaces or objects with
multiple disjoint components. We simply ignore the non-manifold
vertices in the surface detail energy term, and for objects consist-
ing of multiple components, we create a single control mesh as the
envelope of all the components so that they can be deformed to-
gether. In Figure 10, we show an example of a multi-component
mesh, which is difficult to deform via previous differential domain
techniques. See the accompanying video for the deformation pro-
cess.

6 Results

We have built an interactive deformation system based on the
constraints and the subspace solver presented above. With our sys-
tem, the user can simply select groups of vertices as the control
handles and drag them to new positions for deformation. The user
can also apply position or projection constraints on the center or at
all points of the handle; if only the center point is constrained, the



Figure 11: Deformation examples with the skeleton constraint.

(a) 60% volume (b) 160% volume (c) 160% volume
+edge length

Figure 12: Deformation example with volume manipulation.

handle has an extra degree of freedom for rotation around the cen-
tral point. For Laplacian and volume constraints, no manual handle
is required because both constraints are usually applied uniformly
over the entire mesh. The response time of the deformation system
depends on two factors: Nt the number of the iterations needed for
convergence and ∆t the computation cost of each iteration. Nt is
the most important factor but also the hardest to quantify because
it varies significantly depending on many factors such as the shape
of the model, the type of constraints, and the locations of the con-
straints. For the models we have experimented with, the average
Nt is about 15.

The per-iteration cost ∆t is much easier to quantify. It mainly
depends on |X|, |P | and the number of constraints. The most ex-

pensive steps are computing W t
(

Ltb(X)
)

, X = WP and b(X).
As the number of hard constraints increases, solving the linear sys-
tems defined by W tLtLW becomes more expensive. On average,
the cost of an iteration is proportional to |X| × |P |. Please refer to
Table 2 for detailed timing and mesh statistics for all demos shown
in this paper.

Below, we demonstrate deformation effects achievable in our
system. Please also refer to the accompanying video for a live
recording of these effects. In Figure 11, we demonstrate the ex-
pressive power of our skeleton constraint for bending horse legs.
It takes about 20 minutes of user time per frame to obtain these
results.

In addition to volume preservation, our volume constraint also
allows user-controllable volume changes by proper scaling of the
right-hand-side term in Equation 7. In Figure 12(a,b), we show
two deformation results for volume decreasing and increasing. In
Figure 12(c), we add a skeleton constraint on each edge of the mesh
in order to achieve the ballooning effect.

In Figure 13, we demonstrate deformations of a Santa model
which has multiple disjoint components and non-manifold vertices.
The model has more than 40 disjoint components and about 24k
vertices. In the video, we show a walking sequence of the Santa
model, which is produced by first generating 8 key poses using
our deformation technique, followed by mesh interpolation [Zhou
et al. 2005] of these key-frames to produce the whole animation
sequence.

Figure 14 demonstrates the effect of control mesh density on
the quality of our deformation results. As shown, our technique
produces good quality even with fairly coarse control meshes. Of
course, when the control mesh is too coarse, our technique may still
produce grid artifacts as shown in the bottom case.

Multi-resolution Acceleration Multi-resolution methods can be
utilized to accelerate gradient-domain techniques for very large

Figure 13: Deformation examples of Santa.

original + control meshes deformation results

Figure 14: The effects of control mesh density on the quality of deformation

results. Notice the smooth deformation on the top two cases, and the grid

artifacts in the bottom case.

models as demonstrated in [Yu et al. 2004; Zhou et al. 2005]. For
example, the Stanford armadillo has 170K vertices, and directly
applying our non-linear deformation on it takes 4700 ms (micro-
second). Even though this can be accelerated to 775 ms by our
subspace solver performed on a coarse mesh with 220 vertices, it is
still too slow for typical user interactions.

We perform further acceleration via [Guskov et al. 1999] as fol-
lows. First, we build a fine mesh with 30K vertices. We then per-
form our subspace solver over this fine mesh (together with the 220-
vertex coarse mesh) and then add details back via [Guskov et al.
1999] to the original 170K-vertex mesh. This process takes only
200 ms (with 110 ms on our subspace solver + 90 ms for adding
details back to original mesh), which is three times faster than our
subspace solver directly applied over the original mesh.

7 Conclusions

We present a general framework for constrained deformation
tasks using gradient domain techniques. We show how to formulate
several widely-used deformation constraints for gradient domain
techniques. We also develop a subspace deformation technique that
works well with a variety of linear and nonlinear constraints. We
demonstrate these deformation constraints and our subspace tech-
nique with an interactive deformation system that is user friendly
and powerful enough for maintaining surface details as well as ge-
ometric properties such as volume, length, and straightness.

A number of related topics merit further investigation. Our sub-
space approach takes advantage of a coarse control mesh to re-
strict the deformation within a lower dimensional space. Despite
the advantages, combining some other subspace ideas, such as the
example-based subspace in [Sumner et al. 2005; Barbic and James
2005], may yield improvements. It is also worthwhile to investi-
gate the possibility of a hierarchical control mesh, so that it can be
locally refined to adapt to large deformations.

Mathematically, it has been challenging to provide a precise
analysis on the impact of the control mesh and the interpolation
methods. One can apply a backward error analysis to establish a
bound relating the quality of subspace approximation with the fol-
lowing two parameters: (1) the distances between the surfaces de-
fined by the control mesh and by the original mesh, and (2) the
“condition number” of the interpolation, i.e., κ(W tW ) using mean
value coordinates. The basic idea of this backward analysis is to
show that for a continuous path of deformation, there is a solu-



Figure 15: Coarse control meshes around the original fine meshes.

model # vertices
(original mesh)

# vertices
(coarse mesh) full space subspace

Armadillo 30,002 220 2.8 9.1

Horse 14,285 427 6.9 8.2

Tweety 10,240 286 12 23.8

Dinosaur 10,002 159 9.5 34.5

DNA 19,184 194 NA* 16.7

Santa 25,777 448 NA* 5.3

Table 2: Demo scene statistics, including the performance comparison of

full-space and our sub-space solver in frames-per-second (fps). *The DNA

and Santa models contain multiple components, so they cannot be deformed

in full space.

tion of the control variables whose inverse projection of the origi-
nal mesh variables are close to the deformation. However, this type
of mathematical analyzes usually struggle to provide mathematical
bounds that are close enough to what have been observed in prac-
tice. The gap between mathematical analysis and practical observa-
tion might be the consequence of the fact that one has to consider
the worst-case configurations in the analysis, while the practical
deformation in general has better geometric properties (that might
be relatively hard to fully capture in theory). For example, we have
shown through our experiments that aggressive subspace reductions
as shown in Table 2 can be used to obtain high quality deformation.

Thus, it remains an interesting theoretical question to develop
a rigorous analysis, using some practically acceptable conditions,
such as the short ranges of deformation in interactive graphics and
the well-shapedness of the meshes, of our control mesh based sub-
space deformation technique.
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