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Abstract
A method for concise, faithful approximation of complex 3D
datasets is key to reducing the computational cost of graphics ap-
plications. Despite numerous applications ranging from geometry
compression to reverse engineering, efficiently capturing the geom-
etry of a surface remains a tedious task. In this paper, we present
both theoretical and practical contributions that result in a novel and
versatile framework for geometric approximation of surfaces. We
depart from the usual strategy by casting shape approximation as
a variational geometric partitioning problem. Using the concept of
geometric proxies, we drive the distortion error down through re-
peated clustering of faces into best-fitting regions. Our approach is
entirely discrete and error-driven, and does not require parameteri-
zation or local estimations of differential quantities. We also intro-
duce a new metric based on normal deviation, and demonstrate its
superior behavior at capturing anisotropy.
Keywords: surfaces, geometric approximation, geometric error
metrics, Lloyd’s clustering algorithm, anisotropic remeshing.

1 Introduction
Finding a concise, yet geometrically-faithful digital representation
of a surface is at the core of several research themes in graphics.
Given the excessive verbosity of many 3D datasets (and in partic-
ular, of scanned meshes), reducing the number of mesh elements
(triangles, quads, or polygons) of a surface mesh while maintaining
its geometric fidelity is crucial for subsequent geometry process-
ing. Ideally, each element should be made as efficient as possible by
stretching it locally in order to fit a large area of the shape we wish
to approximate while minimizing geometric error. This quest for
geometric efficiency naturally raises the following question: given
a 3D surface, a target number of face elements, and an error metric,
what is the best geometric approximation of the object that one can
find with this face budget? Or similarly, given a distortion tolerance,
what is the smallest polygonal mesh approximant with a distortion
lesser than the tolerance? Despite the fundamental nature of this
question, its cry for an NP-hard optimization problem has led most
researchers to shy away from the search for “optimal” meshes. In
this paper, we present a novel approach where shape approximation
is tackled as a discrete, variational partitioning problem for which
provably-good heuristics are readily available.

1.1 Related Work
Many techniques have been specifically designed to exploit an ob-
ject’s local planarity, symmetry and features in order to optimize its
geometric representation. While most simplification approaches try
to provide an ε-approximation with respect to various metrics, rare
are the methods that target a minimum distortion error for a given
budget of linear mesh elements.

Partitioning A powerful solution to mesh simplification is to
greedily cluster geometric elements, creating in effect a partition of
the original object. Mesh decimation provides an elegant approach

Figure 1: Variational Shape Approximation: Through repeated error-driven
partitioning (left), we find a set of geometric proxies (represented as ellipses,
center) providing a concise geometric description of an input surface (62K
triangles) by efficiently capturing the anisotropy of the initial model; no-
tice the presence of disks on near-spherical regions, and stretched ellipses
on near-parabolic regions. These proxies are then used to construct an ap-
proximating polygonal mesh (right). No user interaction, parameterization,
or differential estimates have been used; total processing time: 3s.

to such a partitioning, through greedy and repeated collapsing of
mesh elements [Hoppe 1996; Klein et al. 1996; Garland and Heck-
bert 1998; Lindstrom and Turk 1998]. However, and although some
of the metrics used for clustering can be proven asymptotically op-
timal (i.e., for infinitesimal triangles) for the L2 metric [Heckbert
and Garland 1999], the greedy nature of decimation leads to sub-
optimal meshes. A similar statement is true for another (almost
dual) family of approaches [Maillot et al. 1993; Kalvin and Taylor
1996; Inoue et al. 1999; Sheffer 2001; Sander et al. 2001; Garland
et al. 2001; Grinspun and Schröder 2001; Lévy et al. 2002] which
gather faces in a set of characteristic regions to provide a succinct,
higher-level description of the geometry. Even when this process is
iterated to improve the results [Shlafman et al. 2002; Katz and Tal
2003], no attempt is made at minimizing a well-defined geometric
error.
Global optimization Contrasting sharply with the previous
greedy techniques, Hoppe et al. [Hoppe et al. 1993] proposed to
cast mesh simplification as an optimization problem. With an
energy functional measuring deviation from the input mesh, they
showed that optimizing the number of vertices, as well as their
positions and their connectivity, captures the curvature variations
and features of the original geometry. Although their functional is
mostly a point-to-surface Euclidean distance, they report excellent
results for mesh simplification. This method was extended later on
to also use an image metric, in order to optimize the mesh not only
through its geometry, but using its texture and normals [Lindstrom
and Turk 2000]. Despite a spring force restricting the anisotropy
of the results, such optimization techniques often result in irreg-
ular meshes for which geometric efficiency (i.e., how many faces
are needed to capture geometry) is particularly good. While other
methods use some form of local mesh optimization (see, for in-
stance, [Balmelli et al. 2002; Ohtake et al. 2003b]), this subject re-
mains marginally studied to date, most certainly because the mere
size of the search space hampers efficiency.
Anisotropy Remeshing techniques [Turk 1992; Lee et al. 1998;
Kobbelt et al. 1999; Guskov et al. 2000] are often much less con-
cerned by approximation efficiency than by the quality of the mesh
elements. For instance, the new vertices are very often left on the
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original manifold, resulting in rather poor visual results for extreme
simplification. However, when a succinct and accurate geomet-
ric representation is needed, a strategic placement and aspect ra-
tio of the mesh elements is crucial, and leads to a strikingly sig-
nificant pay-off in terms of the ratio of mesh size to geometric
precision [Simpson 1994; Borouchaki and Frey 1998]. This is a
consequence of the natural anisotropic nature of most surfaces: as
brought to light in recent graphics work [Interrante et al. 1996; Gir-
shick et al. 2000; Rössl and Kobbelt 2000; Hertzmann and Zorin
2000], the main traits of an originally oversampled mesh can be ex-
tracted from a close inspection of the curvature tensor field. Align-
ing either strokes (as done by caricaturists) or mesh edges (as done
in anisotropic remeshers [Botsch and Kobbelt 2001; Alliez et al.
2003]) along these curvature lines results in a particularly effec-
tive way to describe the geometry of a surface by respecting local
symmetries and key features that govern lighting effects. Although
such a strategy increases the mesh efficiency by matching the con-
ditions of optimality for the L2 metric in the limit (see Section 2.1),
there is no theoretical guarantee of its efficiency of approximation
at coarse scales; additionally, local approximations of differential
curvatures, known to be arguable on discrete meshes, render these
methods more prone to suboptimal results. In this paper, we argue
that a direct, discrete approximation technique should exhibit such
an adaptation to anisotropy asymptotically (as it is a good sanity
check), not be artificially guided by it at coarse scales.

Although good practical approaches for shape approximation
have been proposed in the past, only marginal work has been de-
voted to global minimization of approximation error with respect
to a chosen metric. This is most regrettable given the slew of ap-
plications that could benefit from an efficient shape approximation
algorithm—animation, automatic normal map or geometry image
layout (see [Sander et al. 2003]), optimized coarse meshing for
multiresolution analysis, remeshing, and progressive compression
to name a few. Contrary to most techniques proposed so far that
were either based on greedy approaches or guided by results valid
only asymptotically, we develop a theoretical and practical frame-
work to help with the difficult problem of finding a provably good
trade-off between conciseness and geometric distortion.

1.2 Contributions
We propose a new strategy for the design of succinct and efficient
shape approximations. Our approach is entirely error-driven, and
uses a novel discrete, variational method that does not resort to any
estimation of differential quantities or parameterization. To achieve
our goal, we introduce novel geometric concepts: we define geo-
metric proxies as a best-fit geometric surrogate to effectively cir-
cumvent topological issues (Section 2.2); we then define proper
shape error metrics to measure how well a proxy fits a piece of ge-
ometry (Section 2.3.2); finally, we cast the approximation problem
as a variational partitioning problem (Section 3.1). The resulting
algorithm (Section 3), an extension of fast clustering techniques,
generates efficient geometric approximations of arbitrary triangu-
lated geometry. We also introduce a polygonal remeshing algorithm
based on our contributions (Section 4), and demonstrate the inter-
est of our discrete, variational approach through multiple results in
Section 5.

2 Shape Approximation
In this section, we start with a brief background on approximation
theory applied to surfaces, and motivate our new approach to shape
approximation through variational partitioning.

2.1 Approximation Theory
Approximation theory deals with the problem of replacing com-
plicated mathematical objects with simpler ones while keeping the
primal information content. As we are about to see, a lot of work
has been done on best approximations of smooth functions—yet,
less is known when it comes to approximating geometry.

Figure 2: Lion-vase (400K-face model): Our shape approximation al-
gorithm distributes mesh elements according to local surface complex-
ity. (Right) Flat shaded comparison between original model and its 5K-
polygonal L2,1-approximation (5 min, no user interaction); notice the good
preservation of shape and highlights.

Functional Setting Given a class of functions and a metric
(usually Lp or L∞), approximation theory has provided strong
results on the best approximations with n elements, be they
piecewise-constant elements or higher order ones. Such results
have given rise, for example, to optimal image encoders that give
the Kolmogorov entropy bounds of the problem at hand [Cohen
et al. 2001]. However, most of these results cannot be easily ex-
tended to surfaces: the functional setting relies on a parameteri-
zation when comparing two functions. In the general case of two
arbitrary surfaces, with no mapping known from one to the other,
the functional metrics cannot be used directly.

Height Field Approximation and Notion of Efficiency For
the special case of height fields where an obvious parameterization
can be readily used, a few results are known about the optimality
of piecewise-linear approximation at the asymptotic limit when the
areas of the approximating elements (typically, triangles) vanish. It
has been proven that with respect to the L2 metric, the triangula-
tion that minimizes the error of piecewise linear interpolation for
a given large number of triangles must have an optimal triangle’s
orientation aligned with the eigenvectors of the Hessian of the func-
tion, and an optimal size in each principal direction given by the
reciprocal square root of the absolute value of the corresponding
eigenvalue [Nadler 1986]1. Such an alignment and stretching of the
triangles optimizes the efficiency of the mesh, i.e., minimizes the er-
ror per surface area. Results mostly identical are also proven for an
arbitrary Lp metric [Simpson 1994]. A few results are also known
for optimal approximation of the gradient error [D’Azevedo and
Simpson 1991], or for bilinear approximation [D’Azevedo 2000],
but again, they are only asymptotically valid. These different re-
sults are fairly narrow in scope: first, they are restricted to height
fields; second, the triangulations are assumed to be interpolating
the height field at vertices, which does not seem like the optimal
way to closely approximate geometry at a coarse level; and third,
the asymptotical case does not help in designing a concrete surface
approximation for a small number of triangles. Recent progress
on concrete bounds for the interpolation error and the gradient in-
terpolation error for a non-infinitesimal triangle [Shewchuk 2002]
offers much better insights, but still does not provide, to date, a bet-
ter approach for practical mesh generation. In fact, it is known that
finding the piecewise-linear triangulation with a given number of
vertices that optimally approximates a height field with respect to
the L∞ metric is a NP-hard problem [Agarwal and Suri 1998].

1Note that there is a subtle twist on hyperbolic regions, where there is
not a unique optimal shape and direction, but a whole family of them; we
will come back to this impediment in Section 2.3.1
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Arbitrary Geometry Aside from the asymptotic results men-
tioned above, theoretical knowledge on optimally efficient piece-
wise linear approximation of arbitrary surfaces is mostly unchar-
tered territory despite the considerable amount of practical work on
digital geometry. This lack of foundations and the intrinsic com-
plexity of this problem explains the overwhelming usage of greedy
algorithms, that can reduce the number of triangles but at the ex-
pense of an uncontrollable approximation error, or conversely, can
guarantee a given approximation error criterion but at the expense
of an uncontrollable number of triangles (with the noticeable ex-
ception of a few computational geometry papers proposing algo-
rithms for convex and bivariate surfaces [Agarwal and Suri 1998],
or about optimally-sparse ε-sampling for accurate surface recon-
struction [Amenta and Bern 1999; Boissonnat and Oudot 2003]).

The notion of distance between two surfaces is, however, rou-
tinely used. Probably the most used metric in graphics, the Lp dis-
tance between a surface X and an approximating surface Y is the
extension of the traditional Lp metric for the functional setting, and
is often defined as:

Lp(X, Y ) =





1

|X|

∫∫

x∈X

‖d(x, Y )‖
p
dx





1
p

with: d(x, Y ) = inf
y∈Y

‖x − y‖

where ‖.‖ is the Euclidean distance, while |.| is the surface area.
The extension of the L∞ metric, called the Hausdorff distance,
is naturally expressed as: H(X, Y ) = maxx∈X d(x, Y ), but
can be quite delicate to compute [Aspert et al. 2002]. Notice
that these definitions are sided: a true distance measure should
add the symmetrized version. However, in the context of surface
approximation, the symmetric counterpart increases the complexity
significantly as it contains an integral over the unknown surface. It
is thus discarded in practice, as in [Hoppe et al. 1993]) for instance.

2.2 Variational Partitioning and Proxies
Given the theoretical difficulty in finding a piecewise-linear approx-
imation of geometry with optimal efficiency, we propose to refor-
mulate the problem of surface approximation by introducing the
notions of shape proxies and variational partitions.

Removing Topology from the Search A best geometric ap-
proximation has no obvious reason to preserve the topology of the
input surface. Imagine a square-like 2-manifold flat almost every-
where, except for a high and thin fin in the middle: a best approx-
imation with two piecewise-linear elements is most likely a non-
manifold surface made out of a quad (for the flat part) and a trian-
gle (for the fin). Similarly, a nearly flat surface with multiple tiny
holes is very well approximated with a single quad: the initial ob-
ject and its best 1-element approximant do not have the same genus.
The topology of the approximant should therefore be automatically
induced from the best placements of a given budget of elements,
possibly producing a non-simplicial, polygonal mesh. Thus, disre-
garding topological considerations of the resulting mesh seems not
only reasonable, but highly desirable. Moreover, the search space
gets considerably simplified, avoiding the delicate simultaneous (or
alternating) optimization of vertices’ positions and connectivity at
the same time [Hoppe et al. 1993]. However, we now face the issue
of defining an approximation quality not knowing the topology of
the resulting approximant.

Approximation Through Partitioning Agarwal and
Suri [1998] mentioned that the problem of functional approxi-
mation can be cast as a geometric partitioning one. This idea of
clustering points or faces of a 3D objects into a partition to help
approximate the geometry has already been used many times in
graphics [Kalvin and Taylor 1996; Heckel et al. 2001; Pauly et al.
2002], and particularly for mechanical parts [Inoue et al. 1999;
Sheffer 2001], where clear-cut features make the partitioning
easier. After all, an approximating face is nothing but a surrogate,
linear approximant for a set of original clustered faces that share,

on average, similar geometric characteristics. Therefore, clustering
faces into a partition with k regions appears to be a natural way to
efficiently resample geometry (see Figure 3). However, clustering
is traditionally achieved in a greedy fashion. Although we base our
geometric approximation on partitioning through clustering too,
we will see in the next section that we iteratively seek a partition
that minimizes a given error metric (hence the name “variational
partitioning”). We start by defining our terminology.

Figure 3: Bunny: (left and center) L2,1-optimized geometric partitioning;
(right) Anisotropic polygonal mesh deduced from the partition. Notice the
stretching of the elements on the ears.

Partition and Proxies Each region Ri of a partition R can
be summarily represented to first order as an “average” point Xi

and an “average” normal Ni (the word average is here used in a
broad sense; it will be made clear in Section 2.3 when we define a
metric with respect to which these averages will represent the best
local linear fit). We will denote such a local representative pair
Pi =(Xi,Ni) a shape proxy of the associated region. Thus, for
any given partition of a surface in k regions, we associate a set P
of shape proxies {Pi}i=1..k that approximate the whole geometry.

At this point, it is worthwhile to point out that a k-partition, in
effect, defines a dual meta-mesh of the original: the proxies define
k dual meta-faces (obtained through clustering of original faces),
and the connectivity of the k regions of the partition induces the
topology of this dual mesh: as we claimed earlier, focusing on par-
titioning drastically simplifies our task since the final connectivity
of the approximant is handled implicitly. Note that the topology
of the approximant and the original one do not have to match: the
approximant will automatically filter geometrically-irrelevant topo-
logical details, such as the tiny handles often present on scanned
meshes [Wood et al. 2004]. Now, for this approximant to be rele-
vant, we need to evaluate the quality of the partition—in order to
find a partition with near-optimal quality.

2.3 Metrics on Proxies
Defining an appropriate error metric is a key ingredient in approx-
imation. As mentioned earlier, the L2 or Hausdorff metrics are
often used when comparing two triangulated surfaces. In our case,
we want to measure the geometric relevance of a proxy set for a
given surface: new definitions of error metrics are thus presented
next. It will allow us to “score” a partition in terms of how well it
approximates a surface.

2.3.1 L2L2L2 Metric for Proxies
We can easily extend the notion of L2 distance to our framework.
Given a region, Ri, and its associated proxy, Pi =(Xi,Ni), we de-
note Πi(.) the orthogonal projection of the argument on the “proxy”
plane going through Xi and normal to Ni; the L2 metric is then:

L2(Ri, Pi) =

∫∫

x∈Ri

‖x − Πi(x)‖2dx. (1)

This formula (from which we have removed the usual square root
and area normalization, irrelevant for optimization purposes) mea-
sures the integral of the squared error between the region Ri and its
linear proxy Pi. Notice that we integrate the real L2 distance over
the surface, not just the distance evaluated at the vertices such as
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in [Garland et al. 2001]; in doing so, we make the optimization ro-
bust to irregular sampling rate of the input geometry (see Figure 4).
As we will explain in Section 3.4, finding the L2-optimal proxy for
a given region is fairly simple, since it only requires computing a
barycenter and a covariance matrix.

Figure 4: L2-optimized partition for a highly non-uniform input mesh (no-
tice the disk-shaped region with refined triangles). The sampling irregular-
ity severely distorts the partitioning if point-based covariance matrices are
used (left), while our triangle-based covariance matrices (right) provide the
expected polygonal approximation, capturing the true geometry.

As proven for elliptic areas in the asymptotic limit [Nadler
1986], an L2-optimal approximation of a surface will tend to cre-
ate elements efficiently taking advantage of local anisotropy by be-
ing stretched in the minimum curvature direction with an aspect
ratio of

√

|κmax/κmin|. This stretching along the minimum curva-
ture direction makes very good use of the local shape of the object.
However, in the hyperbolic case, there is no unique optimal shape
and alignment. Since we are targeting a variational approach, this
non-unique optimality is worrisome: a minimization algorithm can
randomly jump around in the null space of the functional, resulting
in undesired oscillations. To circumvent this issue, we look for a
novel metric next.

2.3.2 Introducing L2,1L2,1L2,1 as a Shape Metric
The L2 metric tries to match geometry through approximation of
the geometric position of the object in space. However, the nor-
mal field is fundamental in the way the visual system interprets the
object’s shape: normals govern lighting effects such as diffusion,
specularity, as well as curvature lines and silhouettes; a smooth
normal field defines a smooth shape, and normal discontinuities
indicate features. Moreover, there is evidence that our visual per-
ception is actually more sensitive to changes in normals rather than
in changes in positions: this remarkable property has been used in
compression for instance, where quantization noise can be better
hidden in the low-frequency errors [Sorkine et al. 2003]. As al-
ready noted in [Garland et al. 2001],a metric based on the error in
normal approximation may therefore be more appropriate than L2.

In addition to these considerations on visual perception, there
is also strong evidence that correctly approximating the normal
field is an altogether better approach. In the functional setting,
Shewchuk [2002] advocates that one should focus on getting good
bounds on the gradient interpolation error, as these are much more
difficult to control: the functional interpolation errors can always be
improved through refinement, whereas such a refinement may not
improve the gradient interpolation quality. In fact, approximating
a function well does not mean that its gradient will also get ap-
proximated [Fu 1993]: there are known examples (Schwarz’s Chi-
nese lantern for instance) of triangulated surfaces converging to a
smooth surface for the Hausdorff metric, but with a surface area
diverging, and a non-converging normal field. However, as hinted
by the Poincaré-Wirtinger-Sobolev inequality, controlling the upper
bound of the norm of the gradient interpolation error allows to also
bound the norm of the interpolation error.

Given the cogent body of evidence in favor of a normal-based
measure of distortion, we introduce a new shape metric that we

denote L2,1, as it is based on a L2 measure of the normal field:

L2,1(Ri, Pi) =

∫∫

x∈Ri

‖n(x) − ni‖
2dx. (2)

We show in Appendix A that this metric is numerically superior to
L2 in several ways:
� The anisotropy of the surface is better captured, since the asymp-

totic aspect ratio of an optimal element is in |κmax/κmin|, there-
fore largely superior to the asymptotic L2 behavior. This ad-
vantage is already confirmed at coarse scale, as shown in Fig-
ure 6. Moreover, we prove that there is a unique optimal shape
and alignment in the limit for any (non-isotropic) surface type, be
it parabolic, elliptic, or hyperbolic. The difference in results with
the L2 metric is very noticeable (see Figures 5 and 16): although
the two metrics have their own advantages, L2,1 consistently gives
equal or better visual results according to our tests. Further results
exhibiting the good behavior of this new metric can be found in
Section 5.

� Finding the best normal proxy is as simple as averaging the nor-
mals over the associated region (see Section 3.4). We do not have
to compute a covariance matrix, and thus, we save a significant
amount of computations compared to L2 (or even compared to
the normal-based metric used in [Garland et al. 2001]).
Finally, note that our asymptotical results are in agreement with

the optimal case (super-convergence) of the gradient approximation
mentioned in [Shewchuk 2002; D’Azevedo and Simpson 1991].

Figure 5: Homer: This character illustrates the effect that an error metric
can have on approximation. While L2 (left) and L2,1 (right) behave sim-
ilarly on near-spherical regions such as the top of the head, the belly and
mouth regions are very different in each case.

2.4 Optimal Shape Proxies
We now have everything we need to define what we mean by an
optimal partitioning of an arbitrary surface:

Given an error metric E (either L2 or L2,1), a desired num-
ber k of proxies, and an input surface S, we call optimal shape
proxies a set P of proxies Pi associated to the regions Ri of a
partition R of S that minimizes the total distortion:

E(R, P ) =
∑

i=1..k

E(Ri, Pi).

In other words, the set of proxies is optimal with respect to an error
metric if it minimizes the total approximation error over the pos-
sible sets of proxies of same cardinality. Of course, in practice we
cannot hope to find the global minimum in a reasonable time. How-
ever, we set up our shape approximation as a discrete, variational
partitioning of the initial faces such that we can now apply simple
and powerful discrete clustering algorithms that achieve very good
and on some simple cases near-optimal results.

3 Optimizing Shape Proxies
Given an error metric E, a number k of proxies, and an input geom-
etry S of arbitrary size and topology, we wish to efficiently find a
partitioning R of S in k disjoint, connected regions and its respec-
tive set P of optimal proxies that minimizes (or nearly minimizes)
E(R, P ). Because in practice the input geometry is triangulated,
we can consider this mesh as a discrete collection of faces: the prob-
lem is then cast into optimal discrete clustering, for which simple
algorithms have been proven extremely efficient.
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Figure 6: Four-fingered hand (left): Polygonal shape approximation us-
ing L2 (center) and L2,1 (right), both for 200 proxies. Notice the greater
anisotropy in the L2,1 case.
3.1 Background on Lloyd’s Clustering Algorithm
Clustering a set of discrete points involves dividing them into non-
overlapping regions (or clusters), where points belonging to a re-
gion are closer by some measure of proximity to one another than
to points in other clusters. Every region can be characterized by
a single, “average” center, and the set of all k regions is called a
k-partition. The Lloyd algorithm is a deterministic, fixed point iter-
ation that provides such a partitioning [Lloyd 1982]. Conceptually,
the idea is simple: after defining k random centers, all the data
points are partitioned into k regions by assigning each point to its
nearest center. Then, the algorithm updates the centers to be the
barycenters (centroids) of their associated regions before starting
a new partition with these new centers. This process is repeated
until a stopping criterion is met. It can be proven that such an
algorithm (sometimes referred to as k-means clustering) aims at
minimizing a cost function E based on how tightly each region is
packed and how well separated the different clusters are: the func-
tional E defined by a set of N points {Xj} and k centers {ci} is:
E =

∑

i∈1..k

∑

Xj∈Ri
‖Xj − ci‖

2. For such a functional, Lloyd’s
algorithm always converges in a finite number of steps, since each
step reduces the energy E: the partitioning stage minimizes E for
a fixed set of centers ci, while the fitting stage minimizes E for a
fixed partition. Notice that the optimal fixed point is strongly linked
to the notion of centroidal Voronoi diagram [Du et al. 1999] in the
continuous case, for which centers are exactly the centroids of their
associated Voronoi cell.

Because of its simplicity and ease of implementation, Lloyd’s al-
gorithm is widely used even for higher-order functionals as it man-
ages to find a very good (though not guaranteed to be global) min-
ima. Moreover, Lloyd’s technique also suffers from fewer oscil-
lations than other physically-based particle-spreading techniques,
explaining why this algorithm and its variants are used in many dif-
ferent contexts, including graphics [Hausner 2001; Ohtake et al.
2003a; Katz and Tal 2003; Surazhsky et al. 2003; Sander et al.
2003]. Therefore, if we are able to adapt Lloyd’s algorithm and
use it as a minimizing tool to drive the distortion error down in-
stead of optimizing compactness, we should be able to quickly pro-
duce a low-distortion partitioning and a set of geometric proxies
that closely approximate any input geometry.

3.2 Our Algorithm At a Glance
Lloyd’s method hinges on the two phases of partitioning and fit-
ting, repeated alternately to drive the total energy down. Paralleling
this process, we present a simple and efficient extension of Lloyd’s
algorithm to variational, geometry-driven partitioning that includes
the following steps:
� Geometry Partitioning In order to create a partition of an ar-

bitrary non-flat triangulation, we use an error-minimizing re-
gion growing algorithm that will segment the object in non-
overlapping connected regions.

� Proxy Fitting Once a partition is found, we compute for each
region an optimal local representative, the proxy (see Section 2.2).
These geometric proxies, that minimize the distortion error for a
given partition, are an extension of the centroids in the original
Lloyd’s algorithm.

Nomenclature We now describe the algorithm, and will refer to
the input surface as S, its current partition as R, its k regions as Ri,
and their current respective proxy as Pi =(Xi,Ni). The distortion

error will be referred to as E, and can represent either the L2- or
L2,1-based error defined in Section 2.3.

Figure 7: Half-sphere on plane: (left) random initialization of a 6-
partitioning; (center) after one iteration of our optimization, the regions
self-organize; (right) after 5 iterations, the regions settle.

3.3 Geometry Partitioning
Knowing a current set of proxies P , we wish to update the partition
R while trying to minimize the distortion error E(R, P ) in the
process. We perform this k-proxy clustering as follows.

Initial Seeding For each region of the previous partition, we
first find the triangle Ti of S that is the most similar to its associ-
ated proxy. This is easily achieved by visiting each current partition
region Ri, and by going once through all its triangles to find the one
with the smallest distortion error E(Ti, Pi) (computed using Equa-
tions 3 or 4 in Appendix B). In order to bootstrap the algorithm, the
very first geometry partitioning picks k triangles at random on the
object, and each of these triangles are assigned a proxy defined as
the triangle’s barycenter and its normal. Once these k triangles are
found, we assign them to their respective proxies, while we remove
the proxy assignment of all the other triangles in order to start a new
partition from scratch.

Distortion-minimizing Flooding Once these seed triangles
are found, we wish to “grow” a region out from them, in order
to find a new, better partition. Just like in Lloyd’s algorithm, we
wish to cluster together only faces that are “close” (i.e., with a low
error distortion) to the proxy. Therefore, for each seed triangle Ti,
we insert its three adjacent triangles Tj in a global priority queue,
with a priority equal to their respective distortion error E(Tj , Pi),
and we add an additional tag indicating the label i of the proxy they
are being tested against (a triangle can therefore appear up to three
times in the queue, with different tags and priorities). The region-
growing process is then performed by repeatedly popping triangles
with least distortion until the priority queue is empty. For each tri-
angle popped out from the queue, we check its proxy assignment:
if it has already been assigned to a proxy, we do nothing and go to
the next triangle in the queue; otherwise, we assign it to region of
the proxy indicated by the tag, and push the (up to two) unlabeled
incident triangles into the queue along with the same tag. When the
priority queue has been emptied, each triangle has been assigned to
a proxy: therefore we have a new partition. Notice that our growing
process ensures connected and non-overlapping regions as required,
and that this flooding procedure is extremely rapid (Nlog(N) com-
plexity). Note also that this partitioning method is quite different
from previous clustering techniques: we use an integrated distor-
tion error instead of a term based on local geometric criteria such
as in [Katz and Tal 2003].

3.4 Proxy Fitting
Once we have found a new partition R over the surface S, we
now wish to update the respective proxies Pi =(Xi,Ni) in order
for them to be the best representatives of their associated newly-
updated region Ri (iterative partitioning is exemplified by Fig-
ure 7). Note that, for the given partition R, this procedure will find
the set of proxies that minimizes the total distortion error E(R, P ).
This minimization is easily done using the equations given in Ap-
pendix B. For the L2 metric, Xi is simply the barycenter of the
region Ri while Ni is the direction (the sign does not matter) in-
dicated by the eigenvector associated with the smallest eigenvalue
of the covariance matrix of the region—i.e., the proxy is the least-
square fitting plane traditionally found with Principal Component
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Analysis. For the L2,1 metric, the best fit procedure is even sim-
pler. The proxy normal is the area-weighted average of the trian-
gles’ normals of the region; the point Xi, although irrelevant to the
L2,1 minimization, is chosen to be the barycenter of the region for
display and remeshing purposes.

3.5 Improvements and Details
Several enhancements over the basic algorithm we just described
are easily implemented, dramatically improving the efficiency and
the controllability of our basic technique.

Choosing the Number of Proxies In order to make the vari-
ational partitioning more flexible, we have added a number of pos-
sible interactions that the user can utilize if necessary. We let the
user not only pick the desired number of proxies at any time, but we
also allow interactive, incremental insertion and deletion of proxies.
The insertion is done by finding the current region with maximum
total distortion, and within it, we pick the triangle with worst distor-
tion error as the initial seed for the next flooding (this is, in spirit,
a farthest-point sampling heuristic); this will add a new region and
proxy in the most needed part of the object (see example Figure 8).
Similarly, we allow the incremental deletion of a region. We select
the region to be deleted as follows: for each pair (or even a random
set of pairs, if efficiency is an issue) of adjacent regions, we simu-
late a merging of the two regions and compute the resulting distor-
tion with the new best fitting proxy; the pair of regions achieving
the smallest distortion when merged are then replaced with a single
one, deleting a proxy in effect. With these options, it becomes very
easy to obtain a good partition in a matter of a few seconds.

Region Teleportation It is no surprise that, in the course of
finding a lower distortion, the algorithm can find itself stuck in a
local minimum. Typically, this can happen on a very flat region:
if a region happens to be encircled by other regions with similar
proxies, it may be locally stuck in this minimum configuration as
this position prevents it to roam on the surface and find more effi-
cient positions. Yet it is clearly suboptimal to leave this region as is.
We have therefore implemented a region teleportation procedure to
give a region the chance to tunnel out of a local minima, similar
in spirit to [Bossen and Heckbert 1996; Lindstrom and Turk 2000].
At regular intervals during the clustering process, we simply force
a region deletion as described above, immediately followed by a
region insertion: the effect of this simple two-step operation is to
remove a region stuck in a local minimum, and “teleport” it where it
is most needed. In practice, it is better to first test if the teleportation
is worth it: we use a heuristic that tests whether the error added by
a (simulated) deletion is smaller than half of the error of the worst
region. If this test fails, no teleportation is necessary. These lo-
cal operations drastically improve the final quality of our partition.
This good behavior is most likely due to the similarity of our strat-
egy with a variant of the Lloyd’s algorithm [Kanungo et al. 2002],
known for having tight bounds on the optimality of the results.

Farthest-point Initialization A good initial seeding of the re-
gions goes a long way in getting a good final minimum fast. Al-
though we have found in all our tests that the naı̈ve initializa-

Figure 8: Fandisk: When the user interactively adds a proxy, a seed trian-
gle is placed in the worst-approximated region (left), and the next iteration
allows a new region to quickly grow (right).

Figure 9: Partitioning without (left) and with (right) user-designed area-
weighting: the left-hand side of the sphere has been painted to force a much
coarser discretization.
tion with randomly chosen seeds as described above is just fine in
practice, we have tailored a specific initialization for non-organic
shapes: meshes of mechanical parts for instance can be dealt with in
a particularly efficient fashion through a simple alternative initial-
ization. We simply add one region at a time, perform a partitioning,
then proceed by adding a new region at the triangle of maximum er-
ror with respect to the region it belongs to (again, this is reminiscent
of the usual farthest point strategy); no fitting between two flood-
ings is necessary, as the proxy values are directly picked from the
seed triangles’ barycenters and normals. This initialization works
very well on non-smooth objects, but does not have a significant
pay-off on other objects, particularly if a lot of noise is present.
Convergence Although we cannot guarantee global conver-
gence of our variational approach, a very good behavior is observed
in practice: the proxies start settling down after a few iterations, or
oscillate around extremely similar distortion errors. Note that there
is no need to wait for the regions to settle: in a matter of two to
twenty iterations, results are already visually pleasing (see the error
as a function of the number of iterations in Figure 10). Convergence
is, however, guaranteed for convex objects for the L2,1 norm, since
it amounts to the well-known k-means (area-weighted) clustering
of the discrete normals on the image of the Gauss map. Further-
more, convergence would also be guaranteed for arbitrary surfaces
if one was to relax the connectedness of the regions in the partition;
however, having proxies that correspond to disconnected patches of
surface is less geometrically relevant.

Figure 10: Max Planck: For the two optimized approximations (130 and 300
proxies resp.), we show the associated curves of the L2,1-distortion error as
a function of the number of Lloyd’s iterations; as expected, a few iterations
suffice to reach a much reduced distortion error.

Tailoring Refinements Another valuable interactive tool is to
allow the user to paint regions that require more (resp., less) details
despite their lesser (resp., larger) geometric importance, as in [Kho
and Garland 2003]. For instance, when approximating a face with
very few proxies, the eyes may not be very apparent since they
are not a significant geometric feature: by artificially scaling up
or down the area of the faces painted, the error metric will weight
these regions differently with no change to the algorithm. The ef-
fect of such a forced refinement can be seen on Figure 9.
Smoothing the Normal Field If extreme simplification is de-
sired, it may also be relevant to artificially smooth the vector field
for the L2,1 metric, i.e., the normal associated to each face: this
helps embellish the final result at a low cost—but is by no means
necessary. In order not to introduce a bias in the shape, we use
a local non-iterative anisotropic smoothing, easily implemented as
it reuses a part of the partitioning procedure. For each face, we
initialize a proxy with the triangle’s barycenter and normal, then
launch a flooding algorithm similar in spirit to the one explained in
Section 3.3; but we perform the flooding only for this seed, with
additional thresholds on both the maximum deviation angle with
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the seed’s normal (typically, ten degrees) and the maximum num-
ber of triangles to collect. A local connected region of most similar
geometry is therefore found and spread anisotropically around the
initial seed. We then artificially change the normal of the seed tri-
angle to the area-weighted average normal, which is a smoothed
version of the initial normal. This is very similar in spirit to WENO
techniques [Osher and Fedkiw 2002], but for geometry: such an
anisotropic averaging preserves normal discontinuities perfectly.

4 Application to Meshing
Now that we found a nearly-optimal partitioning, its proxies cap-
ture the essence of the input geometry. They form a perfect draft
for remeshing: if proxies are thought of as local faces (local tangent
planes), we already have the blueprint of a mesh. Additionally, the
adjacency graph of the partition defines the connectivity of a mesh
as well. Therefore, if a mesh output is needed, a set of vertices and
edges can easily be added to obtain a mesh that closely approxi-
mates the original object, in the spirit of [Kalvin and Taylor 1996].

Anchor Vertices Since the proxies can be seen as approximate
faces of the final mesh, we must put vertices at the intersection of
the proxies. Thus, we create an anchor vertex at every original ver-
tex where three or more regions meet. In order to account for every
region, we then check whether each region boundary has at least
three anchor vertices attached to it; if not, we simply add anchor
vertices accordingly as it will guarantee the presence of at least one
polygon per region. The spatial position of these anchor vertices
is determined as follows: for each neighboring proxy of an anchor,
we compute the projection of the associated vertex from which the
anchor was created onto the proxy (i.e., its ideal position for this
proxy); we then simply average these projections.

Edge Extraction Since every anchor vertex has a pointer to its
originating vertex on the input surface, it is easy to now add edges
between the anchor vertices by simply visiting each region bound-
ary. These so-constructed edges may approximate the region’s
boundary rather coarsely, inducing geometric inaccuracies later on
during the triangulation of the approximant mesh faces. Thus, we
use a simple recursive chord-length subdividing algorithm. If a and
b are two anchor vertices linked by an edge separating proxy Pi and
Pj , we visit all the original vertices of the associated boundary arc,
find the largest distance d from these vertices to the edge (a, b), and
add an anchor vertex there. However, if the angle between proxy Pi

and Pj is rather small, even a coarse approximation of the bound-
ary will do: it does not add geometric information on the shape. On
the contrary, when there is a large angle in between the two prox-
ies, a more accurate discretization is desirable. We thus proceed
as follows: if the criterion d · sin(Ni,Nj)/‖(a, b)‖ is larger than
a given threshold, we recursively add anchor vertices and edges to
better approximate the boundary until the criterion is met.

Figure 11: Discrete Constrained Delaunay Triangulation: Flooding the
mesh from the anchor vertices (solid dots) creates triangles (light grey, left
and center) whose three corners have different colors. Each of these trian-
gles generates a meta-triangle during meshing. A final edge-removal pass
provides a L2,1-polygonal model (right, bottom).

Triangulation With the anchor vertices and edges defined, we
already have a polygonal mesh. However, when the number of
proxies is fairly small, the polygons have no guarantee of being
almost flat or convex. Thus, we need to triangulate this initial graph
in order to be able to truly call it a mesh. This is done through a
“discrete” Constrained Delaunay triangulation (CDT) to make the
process robust to any sort of extreme approximation: indeed, we
will create Delaunay-like triangles within each region, while con-
straining the existing anchor-based edges to be part of the final
triangulation. To achieve this pseudo-CDT, we resort once again
to a flooding algorithm, very similar to the multi-source Djisktra’s
shortest path algorithm with an edge weight equal to its length, and
for which the sources are the anchor vertices: it will, in spirit, con-
struct discrete Voronoi cells from which the triangulation is easily
extracted. In a first step, we only flood the boundary of a region so
that every vertex on it is colored depending on the closest anchor
vertex: this will enforce the constrained triangulation by forcing
the boundary to be in it. We then start a flooding of the interior
of the region, coloring the vertices also according to their closest
anchor vertex.

The extraction of the final triangles is now straightforward. We
look at every triangle of the input mesh whose three vertices have
distinct colors: each of them corresponds to a triangle in the final
triangulation, emanating from the anchor vertices indicated by the
three colors. A final pass can be done on these newly-added edges:
swapping some of them may locally improve the compacity of the
triangles in the rare occasions when the discrete approximation of
the Delaunay triangulation is imperfect. A simple test followed by
a swap if it shows relevant is therefore done on each internal edges.
A summary of this process is depicted in Figure 11.

Figure 12: Generation of a polygonal model: triangle mesh obtained via
CDT (top-right); creation of well-shaped quads (bottom-right), then poly-
gons (bottom-left) by iterative edge removal.

Polygons Due to the very nature of our partitioning, the newly-
triangulated mesh may have useless edges: since every region
should result in nearly flat geometry, there are sometimes no rea-
son to have edges within these polygonal faces, except to avoid
concave polygons, detrimental to the graphics pipeline. We there-
fore perform a final pass over the triangulation to remove the edges
that do not contribute to the shape. First, we try to make as many
nicely-shaped quads as possible: we look at edges that can be safely
removed (i.e., that produce no normal flips); we sort them by a
score linked to the well-shapedness of every candidate quad [Pebay
2002]; finally, we go down the list and remove the edges creating
the best quads first, until the list is empty. Second, we perform a
second pass in order to create larger polygons if possible; for each
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remaining edge, we first test if removing it would not induce a con-
cavity in the mesh, and if it would not change the normal by more
than a given threshold (typically, 20 degrees); for the eligible edges,
we compute a score based on the area of the potential polygon; we
finally go over the edges in order of decreasing score, to create the
largest polygons first. A close-up on the remeshed Fandisk model
in Figure 12 exhibits the type of polygonalization we finally obtain.

The meshing of the proxies is fast, and never took more than
one second on all the meshes shown in this paper. Other meshing
techniques could be used, using local parameterization of the re-
gions for instance, but our discrete parameterization-free approach
has proved satisfactory.

Figure 13: L2,1-Approximation: our versatile framework optimizes the effi-
ciency of geometric representations. (Left) Armadillo (300 proxies, initially
346K triangles), (Right) Feline (50 proxies, initially 100K triangles).

5 Results and Discussion
We have tested our variational partitioning technique extensively,
on geometry varying from organic shapes to mechanical parts, and
from toy examples to large, noisy scanned meshes (see Figures 2
and 13). Although the L2 metric provides good approximations in
general, the L2,1 results are in agreement with what we would have
intuitively expected from a good segmentation of geometry, and of-
ten capture more details. In both cases, our variational approach
allows the symmetries to be quickly found, the anisotropy to be au-
tomatically detected and exploited, and the regions to line up with
the features. Finally, we insist on the fact that, while the “canons
of beauty” for graphics meshes usually involve nicely-shaped tri-
angles with a smooth sampling gradation, our concise, optimized
meshes sharply depart from the norm; but they gain in efficiency by
respecting features and symmetries (see Figure 17).

The application of this new type of approach are numerous. Such
an automatic segmentation/polygonalization of redundant datasets
can be, for instance, directly used for reverse engineering [Várady
et al. 1997; Botsch and Kobbelt 2001] and scanned meshes. The
proxy optimization also seem to offer interesting alternatives to
existing methods, such as the greedy selection of representative
planes for billboard clouds [Décoret et al. 2003]. Moreover, us-
ing anisotropic ellipses (computed from the eigenvalues of the re-
gions’ covariant matrices) could further optimize surface splatting.
The WENO-type face clustering has been surprisingly effective at
smoothing geometry, and could be explored further. Lastly, vari-
ous optimizations are likely to further improve the efficiency of the
minimization procedure, such as lazy evaluations for instance.
Limitations Being based on iterative optimization, our tech-
nique cannot compete with greedy methods such as [Garland and
Heckbert 1998] in terms of computational time: improving mesh
efficiency can be three to twenty times slower when compared with
simplex removal. Although it remains fairly interactive (between 3s
for Figure 1, to 10 minutes for Figure 17), it should be reserved for
offline computations: greedy approaches perform really well given

Figure 14: (Left) Dinosaur model; (Center) L2,1-approximation; (Right)
Results for QEM [Garland and Heckbert 1998] with same number of edges.
Note that our approach reproduces the “highlights” (see neck), with a sym-
metric Hausdorff error 18% better (as measured by [Aspert et al. 2002]).

the processing time (see Figures 14 and 15). In fact, our tests show
that Qslim [Garland and Heckbert 1998] often outperforms our L2

results if an L2-optimized mesh with a given number of triangle
is sought, as our actual meshing procedure is not error-driven and
is intrinsically designed for polygonal outputs. Similarly, we are
only handling piecewise-linear 2-manifolds, although an extension
to point clouds with local approximation of connectivity is feasi-
ble. At the algorithmic level, our meshing technique can still be
improved. For instance, we could allow the final mesh to be non-
manifold, resulting in even more concise meshes for extreme sim-
plifications. Indeed, in the case of a fin-like feature, we currently
create a pyramid-type fin during the discretization even if there is
only one region for the whole fin. Lastly, the Voronoi-like cells ob-
tained on spherical regions (see top of Homer’s head on Figure 5)
indicate that we could locally extract a dual mesh, leading to nicely-
shaped triangles in round regions and still elongated elements in
anisotropic regions.

Figure 15: Comparison of the Hausdorff error for QEM [Garland and Heck-
bert 1998] and for our L2,1 technique, for equal number of vertices (a com-
parison using equal number of edges leads to an extremely similar curve).

6 Conclusions
By breaking away from the traditional approximation paradigm that
consists in directly optimizing a piecewise-linear approximant of
an original surface, we have proposed a simple and efficient vari-
ational shape approximation approach. Through mutual and re-
peated error-driven optimizations of a partition and a set of local
proxies, our method provides concise geometric representations ei-
ther in the form of local best-fit geometric representatives or in the
form of a polygonal mesh. We have also presented a novel shape
metric, allowing the capture of more subtle details than the tradi-
tional L2 metric.

The versatility of our framework paves the way to a multitude of
future work. We plan to try a Sobolev metric (H1) next, since it
would simply consist of the sum of the L2 and L2,1 energies and
would only require a low-order polynomial root solver to compute
the best fit. Other metrics, incorporating color and texture infor-
mation, can also be easily tried. Variational motion approximation,
i.e., a 4D (3D + time) approximation using a space-time metric,
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Figure 16: Mechanical parts: 50 proxies on the Fandisk using L2 (left)
vs L2,1 (center). Notice that the two metrics are adopting two different
approximation strategies. Approximating the high-genus casting model with
172 L2,1-proxies (right).

could also be used to simplify large scientific simulation sequences,
making the best of both spatial and temporal components. Geom-
etry compression and higher-order proxies are two other obvious
avenues to explore. Finally, we wish to study the notion of shape
complexity (see [King and Rossignac 1999]) and how it relates to
the choice of a metric, as it could help making a few steps towards
a sampling theory for shapes.
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A Asymptotic Behavior of the L2,1L2,1
L2,1 Metric
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In this section, we prove that asymptotically, an element is most efficient

if: (i) the eigenvectors of its inertia matrix are along the principal curvature
directions, and (ii) the eigenvalues’ ratio is equal to the principal curvatures’
ratio. Although this property holds for arbitrary elements, we only consider
rectangular elements for the sake of simplicity. Consider an arbitrary surface
S. Let R be a small rectangle of dimension 2a × 2b = |R|, and such like
R is tangent in its center to the surface S at a point p. The normal np at p
is therefore also normal to R. The only parameters that are not determined
are a, b, and the angle θ between the minimum curvature direction and the
side of R (see Figures A.1 and A.2). Then we have [Gray 1998]:

n(x, y) ' np + H
(x

y

)

H is the (symmetrical) Hessian matrix. Since p is the barycenter of R,
the average normal N is np. Therefore, the L2,1-based error E is:

E =
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Notice that Q = HtH = H2 is by definition always symmetric positive,
even if H is not positive (like in hyperbolic regions). We now define the
efficiency f = E/|R| as the ratio of error covered by area unit [Simpson
1994]. Obviously, we wish f to be minimum. In our case, we can rewrite:

f =
1

3
(Q11 a2 + Q22 b2)

Now if we try to optimize, using a Lagrange multiplier λ, the efficiency as a
function of a and b under the constraint that the area ab is constant, we get
the following linear system:

2

3

(Q11 a

Q22 b

)

= λ
(b

a

)

We then find that the optimal dimensions of R is: a = µ√
|Q11|

, b =

µ√
|Q22|

, µ being a constant.

For this optimal rectangle, we have: f =
2|R|
12

√
Q11Q22. However,

notice that det Q = Q11Q22 − Q2

12
≥ 0 for any θ. The efficiency f is

therefore best when Q12 = 0: Q is then diagonal, which means that H is
also diagonal and thus, θ = 0. As a consequence, the optimal quadrangle is
aligned with the principal curvature (since θ = 0 - see Figure A.3); and has

a side ratio of a/b =
√

Q11

Q22
= |H11

H22
|, i.e., of ratio |κ2/κ1| (since H is

diagonal in the optimal configuration). This result is particularly strong as
it is valid in all regions, be them elliptic or hyperbolic.

B Formulas for Error Metrics
In this last section, we provide the reader with the equations needed to com-
pute the distortion errors and the best-fitting (error minimizing) proxies.

Formulas forL2L2L2 Let Ti = (v1, v2, v3) be a triangle of area |Ti|, and let
Pi be a proxy (Xi,Ni)—here considered as a plane passing through Xi,
of normal Ni. Let d1, d2, and d3 the orthogonal distances of the vertices
v1, v2, and v3 to the plane Pi. The L2 distance between Ti and Pi is:

L2(Ti, Pi) = 1

6
(d2

1
+ d2

2
+ d2

3
+ d1d2 + d1d3 + d2d3)|Ti|. (3)

As for the minimization, we find the best-fit Xi of the region Ri simply
using: Xi =

(

∑

Ti∈Ri
gi|Ti|

)

/
(

∑

Ti∈Ri
|Ti|

)

, where gi stands for

the barycenter of triangle Ti, i.e. gi = (v1+v2+v3)/3.
The best-fit normal Ni of the region Ri is equal to the eigenvector cor-

responding to the smallest eigenvalue of the following matrix:
∑

Ti∈Ri
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where Mi =

(

v2 − v1
v3 − v1
0 0 0

)

.

Formulas for L2,1L2,1L2,1 For a triangle Ti of area |Ti|, of normal ni, and of
associated proxy Pi = (Xi,Ni), the L2,1 error is computed as follows:

L2,1(Ti,P) = ‖ni − Ni‖2|Ti|. (4)
Now for region Ri, the optimal proxy normal Ni is simply equal to the
vector:

∑

Ti∈Ri
|Ti|ni, after normalization to make it unit.
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