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Robust Repair of Polygonal Models

Tao Ju∗

Rice University

Figure 1: A synthetically distorted Horse model (left) containing numerous self-intersecting polygons, gaps and holes, and the repaired model
(right) with a closed surface.

Abstract

We present a robust method for repairing arbitrary polygon mod-
els. The method is guaranteed to produce a closed surface that
partitions the space into disjoint internal and external volumes.
Given any model represented as a polygon soup, we construct an
inside/outside volume using an octree grid, and reconstruct the sur-
face by contouring. Our novel algorithm can efficiently process
large models containing millions of polygons and is capable of re-
producing sharp features in the original geometry.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations; Curve,
surface, solid, and object representations; Geometric algorithms,
languages, and systems

Keywords: model repair, robustness, scan conversion, octree

1 Introduction

Polygonal representations are widely used in computer systems
and applications for modeling 3-dimensional geometry. Polygo-
nal models can be created from various sources, such as 3D range
scans and computer-aided design software. However, due to limita-
tions of these creation methods, the resulting polygonal models of-
ten cannot be directly utilized by applications that require a closed
model as input. By saying closed, we mean that the surface of the
model partitions the entire space into disjoint internal and external
volumes, so that each polygon lies between an internal volume and
an external volume. A non-closed model often contains mesh de-
fects such as gaps, holes, self-intersecting polygons, etc. Figure
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2 compares two groups of curve models in 2D, one group being
closed (bottom) and the other not (top).

We seek a robust method for repairing an arbitrary polygonal
model, so that the repaired model is always closed. Due to the
diversity and complexity of polygonal models, mesh repair faces
daunting challenges. Specifically, an ideal repair method should
possess the following properties:

1. Robustness: The method should always produce a closed sur-
face for any input model.

2. Efficiency: The method should be able to process huge mod-
els within reasonable time and space.

3. Accuracy: The method should preserve the geometry of the
input model whenever possible.

Unfortunately, no existing methods are known to the authors that
satisfy all the desired properties. In particular, the robustness of the
repair method is hard to guarantee, especially for huge input models
with numerous mesh defects. In this paper, we present a satisfactory
solution using a volumetric approach. Our method takes a polygon
soup (e.g., the horse in figure 1 left) as input, constructs an interme-
diate volume grid, and generates the output surface (e.g., the horse
in figure 1 right) by contouring the grid. The method is guaran-
teed to produce a closed and consistently oriented surface for any
arbitrary input polygonal model. By using memory-less operations
and divide-and-conquer techniques, input models with millions of
triangles can be repaired on a consumer level PC in minutes. As an
option, our method is also capable of reproducing sharp features on
the input surface, which is particularly suitable for repairing CAD
models.

1.1 Contributions

Although other volumetric techniques have been proposed for re-
pairing polygon models [Nooruddin and Turk 2003] or filling holes
on the model surface [Curless and Levoy 1996; Davis et al. 2002],
our method differs substantially in the following aspects:

888

© 2004 ACM 0730-0301/04/0800-0888 $5.00



Figure 2: Three non-closed curves (top) and three closed curves
(bottom). Vertices are represented by dots, internal volumes are
colored dark gray and external volumes are colored light gray.

1. Unlike previous methods that rely on a uniform volume grid,
we employ a space-efficient octree grid that allows the input
model to be repaired and reconstructed at a higher resolution
with less space consumption. Correspondingly, we present a
fast, memory-less and numerically robust algorithm for scan-
converting an arbitrary input model onto an octree grid.

2. The core of our method is a simple and robust algorithm
for determining, at each point on the grid, a sign indicating
whether the point lies inside or outside the input model. The
signs are generated as a post-process on the scan-converted
grid and requires no global iterations. Our algorithm can be
efficiently implemented as recursive procedures on the octree.

3. Unlike previous volumetric approaches that generate blobby
surfaces, by recording Hermite data, we are able to reproduce
sharp features in the original model using Dual Contouring
[Ju et al. 2002].

2 Related works

2.1 Mesh-based model repair

One class of model repair methods, which we refer to as mesh-
based methods, operate directly on the polygons in the model to
repair various geometric and topological errors. Turk and Levoy
[Turk and Levoy 1994] introduce mesh zippering for removing
overlapping regions on the mesh when merging multiple range scan
images. Barequet and Kumar [Barequet and Kumar 1997] describe
an interactive system that closes small cracks by stitching corre-
sponding edges and fills big holes by triangulating the detected
hole boundary. A different approach is proposed by Borodin et
al. [Borodin et al. 2002] who describe gap closing as progres-
sive boundary decimation. Recently, Liepa [Liepa 2003] applies
mesh fairing after hole triangulation so that the patch interpolates
the shape and density of the surrounding mesh. On the other hand,
Gueziec et al. [Gueziec et al. 1998] generate manifold surfaces
from non-manifold sets of polygons by selectively separating and
stitching polygon edges.

Mesh-based methods are good at reproducing the original geom-
etry, since only regions with mesh defects are detected and repaired.
However, the output model is not guaranteed to be closed and may
contain self-intersecting polygons. Moreover, detection of defec-
tive regions (such as holes) often requires global traversal of the
entire model, which is both time-consuming and space-consuming.

A related method is proposed by Murali and Funkhouser [Murali
and Funkhouser 1997], in which the input model is represented as
a BSP tree and cells on the tree are classified as solid or non-solid.
The output surface always encloses a solid space. Their method,

however, involves expensive operations such as construction of a
BSP tree from the input model and solving systems of linear equa-
tions whose size equals the number of input polygons.

2.2 Volumetric model repair

A volumetric approach to model repair involves representing the in-
put model on a volumetric grid and reconstructing an output surface
from the grid. Several approaches have been proposed for perform-
ing each task, which we shall review separately. (Note that another
problem related to volumetric model repair considers surface recon-
struction from scattered points via an intermediate volume [Hoppe
et al. 1992; Ohtake et al. 2003].)

2.2.1 Volume construction

Converting a polygonal model into a volume representation is of-
ten referred to as scan-conversion or voxelization. To be able to
reconstruct a closed surface, the key is to to determine, at each grid
point, a sign indicating whether it lies inside or outside the model.
Hence we can classify scan-conversion techniques by the way they
generate signs on the volume.

The first class of scan-conversion methods only detect cells on
the volume that intersect with the model surface without generat-
ing signs. For example, Huang et al. [Huang et al. 1998] describe
separability and minimality as two desirable features of a discrete
surface representation. Voxelization is performed by extending the
well-known 2D scan-line algorithm [Foley et al. 1990]. Dachille
and Kaufman [Dachille and Kaufman 2000] present an incremen-
tal technique for voxelizing triangles onto a multi-valued volume
for efficient visualization. However, the volumetric representations
generated by these methods are thin-shelled, thus do not possess
inside and outside partitions.

The second class of methods generate a signed volume directly
from the input model. Frisken et al. [Frisken et al. 2000] generate
a signed distance at each grid point by computing the minimum
signed distance from the grid point to each input polygon. However,
the method fails when input model contains inconsistently oriented
polygons (e.g., non-orientable surfaces).

In a different approach, Nooruddin and Turk [Nooruddin and
Turk 2003] proposed two methods for determining the sign at a
given grid point directly from input polygons: parity count and ray
stabbing. Both methods involve casting rays from each grid point
and voting based on the parity or locations of intersections on each
ray with the model. However, since ray casting is a global oper-
ation, a small error on the surface may cause a large portion on
the grid at a distant location to be misclassified. Moreover, sign
generation relies on a uniform grid, which makes it difficult for
representing the model at a high grid resolution.

The last class of scan-conversion methods generate in-
side/outside partitions on the volume as a post process. Andujar
et al. [Andujar et al. 2002] first construct an octree grid using the
recursive subdivision method described by Brunet et al. [Brunet
and Navazo 1990], and then determine the inside/outside property
of each cell using a robust seed algorithm [Andujar 1998]. Simi-
larly, Oomes et al. [Oomes et al. 1997] first voxelize triangles onto
a uniform grid and then fill the cells inside the model using a bound-
ary filling algorithm [Foley et al. 1990]. These filling algorithms,
however, fail if the model contains holes on the surface.

To be able to determine signs in the presence of holes, two meth-
ods were introduced for processing complex surfaces: the Space
Carving method [Curless and Levoy 1996], and the Volumetric Dif-
fusion method [Davis et al. 2002]. Space carving works on surfaces
reconstructed from range scans and relies on line of sight infor-
mation from the scanners to determine empty regions on the vol-
ume. Volumetric diffusion, on the other hand, utilizes pre-existing
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signed distances at each grid point and employs global iterations
that converge to form a smooth and naturally looking surface. Both
methods depend on extra information (i.e., line of sight or signed
distances) that can not be easily or reliably obtained from an arbi-
trary polygonal model other than range scans. Moreover, diffusion
is a global process, which traverses a much larger space than nec-
essary to close a hole and can be slow to converge. As a final note,
these two methods are specialized for filling holes, hence the recon-
structed surface is not guaranteed to partition the space into disjoint
internal and external volumes.

2.2.2 Surface reconstruction

Surface reconstruction from a signed volume is usually performed
through contouring, which produces a polygonal approximation of
the zero-value isosurface. Contouring algorithms can be classified
into two types: primal methods (such as Marching Cubes [Lorensen
and Cline 1987]) and hybrid methods (such as the Feature Sensitive
Surface Extraction method [Kobbelt et al. 2001] and Dual Contour-
ing method [Ju et al. 2002]). Primal contouring methods extract
polygons by connecting points lying on the grid lines, and generate
blobby surfaces with rounded corners. Hybrid methods allow poly-
gon vertices to be placed inside grid cells to reproduce sharp edges
and corners. The volumetric model repair methods that we have re-
viewed [Nooruddin and Turk 2003; Curless and Levoy 1996; Davis
et al. 2002] use primal contouring methods for surface reconstruc-
tion, since the information stored on the volume is not adequate for
reproducing sharp features from the original geometry.

3 Robust model repair pipeline

As illustrated in figure 3, our model repair process consists of three
steps:

1. Scan-conversion: Embed the input model in a uniformly
spaced grid, and mark edges on the grid that intersect the poly-
gons as intersection edges. For efficiency, cells containing
intersection edges are stored in an octree (figure 3 (b)).

2. Sign generation: At the grid points, generate signs that are
consistent with the intersection edges, so that each cell edge
intersecting the model should exhibit a sign change (figure 3
(c)).

3. Surface reconstruction: Reconstruct a closed surface on the
signed grid by contouring. Dual contouring can be used to
reproduce sharp features when Hermite data is stored on the
intersection edges (figure 3 (d)).

Sign generation is the central step, which results in a partitioning
of space that is essential to the construction of a closed surface.
Our approach relies on the grid edges intersected with the input
polygons, which can be robustly obtained for any type of model
(even non-orientable surfaces). By adding or removing intersection
edges at appropriate locations, we can always generate consistent
signs at the grid points.

4 Scan-conversion

In the first step of model repair, we convert the input model to a
volumetric form by constructing an octree grid that records edges
intersecting the input model (i.e., intersection edges). The octree
can be built incrementally as the polygons are read from the input
model. Specifically, for each polygon to be processed, we recur-
sively walk down the octree, expanding nodes when necessary, un-
til all the leaf cells at the bottom level of the tree that intersect the

a b

c d

Figure 3: Model repair pipeline: the original model (a), an octree
grid with intersection edges highlighted (b), signs at grid points
generated from the intersection edges (c), and the final model re-
constructed by contouring (d).

polygon are located (figure 4 (a) to (c)). Then, cell edges that inter-
sect the polygon are identified in those leaf cells and are marked as
intersection edges (figure 4 (d)).

a b c d

Figure 4: Recursive steps in scan-converting a polygon onto an oc-
tree.

Although intersection edges suffice for the purpose of sign gener-
ation, extra information (e.g., exact intersection points and triangle
normals) can be recorded on each intersection edge for better sur-
face reconstruction (see Section 6). To avoid duplication, each leaf
cell only maintains the extra information on its three primal edges
(i.e., edges adjacent to the lower-left-far cell corner), and stores
the intersection properties of all its edges in a 12-bit mask for fast
querying.

Incremental update of the octree is a memory-less operation, in
that no space is necessary for storing the input model. Polygons
are processed one at a time, and are discarded after they are scan-
converted. It is therefore particularly suitable for processing large
polygon models, such as 3D range scan data. For example, the
David model at 1mm resolution with over 56 million triangles can
be scan-converted onto an octree grid at the same resolution (at
depth 13) using less than 500 megabytes memory (consider that
storing the model itself would take over 1 gigabyte).

4.1 Efficient and robust intersection tests

Assuming the input polygons are triangles, the main operations in-
volved in the scan-conversion process are triangle-cube intersec-
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tions and triangle-edge intersections. Both operations can be per-
formed efficiently using the Separating Axes method [Gottschalk
1996]. Specifically, a triangle and a cube are disjoint if their pro-
jections on any one of the following 13 vectors are disjoint: the
triangle face normal, 3 cube face normals, and 9 pair-wise cross-
products of the 3 edges of the cube and the 3 edges of the triangle.
Treating a cell edge as a degenerate cube, triangle-edge intersection
can be tested using the same set of projection vectors as those com-
puted from the triangle and the cube containing the edge. Since the
octree cells and their cell edges are aligned to the primal axes, the
projection vectors can be easily computed once for each triangle
and used for performing all intersection tests on the octree. Table
1 reports the resulting scan-conversion time for models of various
sizes.

Intersection tests using Separating Axes involve floating point
operations that are prone to numerical errors. These errors cause
incorrect identification of cell edges that intersect the polygons,
which may lead to erroneous signs generated in the next step. To
eliminate floating-point errors, we use integer operations to obtain
exact results. Specifically, we embed the octree grid and the input
model inside a fine integer lattice of size 2N in each dimension,
and clamp each grip point and polygon vertex to the nearest lat-
tice point. We choose N = 20 to achieve a comparable accuracy as
single-precision floating-point coordinates. Since vertices of the tri-
angle and the grid cells can be represented by N-bit integers, their
differences are vectors representable by N-bit integers too. Con-
sequently, the 13 projection vectors used in the intersection tests,
which are cross-products of these difference vectors, require 2N-bit
integers. Finally, the projections of triangle and cube vertices on
any of the 13 projection vectors can be represented by integers with
2N + N = 3N bits. As a result, a 64-bit representation suffices for
our integer computation.

5 Sign generation

Given a scan-converted grid, our next task is to determine signs
at the grid points such that each intersection edge exhibits a sign
change (i.e., a consistent sign configuration). However, consistent
signs do not exist when a cell face contains an odd number of edges
that intersect the model, as shown in figure 5. Such cases may arise
either due to an insufficient grid resolution (figure 5 left) or a non-
closed input model (figure 5 middle and right). Denote the set of
original intersection edges on the scan-converted grid as E, our goal
is to obtain a modified set Ê of intersection edges that possess a
consistent sign configuration.

Figure 5: Cell faces (colored gray) containing an odd number of
intersection edges (drawn in black). Input models are shown as
broken lines.

5.1 Overview

The set E defines a dual surface S, which consists of quads that are
dual to the edges in E. Specifically, each quad in S is perpendicular
to an edge in E and centered at the midpoint of that edge. Figure
6 (a) shows an input model, and figure (b) shows the edges on a
depth 4 octree grid intersecting the model and the corresponding

Figure 6: Sign generation via the dual surface: the input model
with an open top (a), edges intersected with the model and the cor-
responding dual surface (b) (boundary edges are highlighted), the
patched dual surface with corresponding intersection edges (c), and
the repaired model based on the consistent signs generated (d).

dual surface. We introduce a boundary operator ∂ , so that ∂ (S)
extracts the boundary edges (i.e., edges shared by an odd number
of quads) on S (highlighted in figure 6 (b)). Note that each edge in
∂ (S) is dual to a cell face on the primal grid that contains an odd
number of intersection edges. In other words, ∂ (S) is empty when
all cell faces on the primal grid are well-formed: they contain an
even number (0, 2 or 4) of intersection edges.

The key observation is that, a consistent sign configuration exists
for E on the primal grid if and only if ∂ (S) is empty (a brief proof is
given in Appendix A). Therefore, we can proceed in the following
three steps for sign generation:

1. Detect boundary cycles. ∂ (S) is a collection of closed cycles
bi. In fact, since a vertex on S is shared by two edges on each
quad that contains the vertex, every vertex on S is shared by an
even number of boundary edges. Hence ∂ (S) is an Eulerian
graph and can be partitioned into disjoint cycles bi [Bollobas
1979]. The dual surface in figure 6 (b) contains one boundary
cycle at the top.

2. Patch boundary cycles. For each boundary cycle bi, we con-
struct a patch Pi so that ∂ (Pi) = bi. Let 	 be the symmetric
difference operator1, we note that ∂ (S	Pi) = ∂ (S)	∂ (Pi) =
∂ (S)− bi. Hence taking the symmetric differences between
every Pi and S results in a patched surface Ŝ, such that ∂ (Ŝ) =
/0. Figure 6 (c) shows the patched result of the dual surface in
figure 6 (b).

3. Generate signs. The patched dual surface Ŝ corresponds to
a new set of intersection edges Ê on the primal grid, where
consistent signs can are generated. Figure 6 (d) shows the
repaired model based on the intersection edges shown in 6
(c).

1The symmetric difference between two sets X and Y is defined as X 	

Y = X ∪Y −X ∩Y .
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Next, we will demonstrate how each step can be efficiently im-
plemented on the octree grid as recursive procedures.

5.2 Detect boundary cycles

Detecting the boundary edges in ∂ (S) simply involves enumerating
the cell faces on the primal grid containing an odd number of inter-
section edges. To form cycles, we introduce a bottom-up procedure
detectProc[N] that returns all complete cycles B and incomplete
cycles (i.e., paths of boundary edges) R inside the octree node N.
The key to the recursion is, a cycle or an incomplete cycle either
lies inside a child node, or consists of incomplete cycles in multiple
children nodes connected by edges crossing the faces between the
nodes. At a leaf node, detectProc[N] returns B = /0 and R = /0. At
an internal node, detectProc[N] proceeds as follows:

1. Call detectProc[Ni] for every child node Ni, which return
cycles Bi and incomplete cycles Ri.

2. Detect the boundary edges E crossing the faces between adja-
cent children nodes.

3. Connect Ri by E to form complete cycles B̄ and incomplete
cycles R. B is the union of B̄ and the Bis.

5.3 Patch boundary cycles

Given a boundary cycle b on the dual surface, we need to construct
a patch P so that ∂ (P) = b. We would also like P to contain as few
quads as possible, so that a minimum portion of the grid is affected
by patching. The continuous version of the problem is known as
the Plateau’s Problem, which seeks the surface of minimum area
spanning a given curve in 3-D space. The solution to the Plateau’s
Problem involves methods in differential geometry [Douglas 1931].
For efficiency and robustness, we introduce a divide-and-conquer
method for constructing a P with a boundary cycle b, so that P lies
in the discrete convex hull(i.e., the set of all grid cells contained
or partially contained in the convex hull) of b. (A similar proce-
dure was used in [Schroeder et al. 1992] for triangulating a loop of
polygon edges.)

The method relies on the fact that, as shown on the left of figure
7, there exists a splitting plane on the primal grid that intersects a
cycle b on the dual surface with two edges e1 and e2 orthogonal to
the plane. To find P, we first construct a band of quads Q connecting
e1 and e2, which splits b into two sub-cycles b1 and b2 such that
b = ∂ (Q)	b1 	b2. Assuming that recursions in sub-cycles b1 and
b2 produce two sub-patches P1 and P2, respectively, P is formed by
Q	P1 	P2.

Figure 7: Patch construction by divide-and-conquer. Left: quads Q
connect edges e1 and e2 orthogonal to the splitting plane and divide
the original cycle into b1 (solid lines) and b2 (broken lines). Right:
on the splitting plane, quads Q are dual to cell edges (thickened)
crossing the line h (dashed) connecting the projections of e1 and
e2.

To construct a patch with low surface area, we let the band of
quads Q follow the plane on which e1 and e2 lie. Specifically, as
shown on the right of figure 7, we connect the projections of e1
and e2 on the splitting plane with a line segment h (in practice the
projections are computed by averaging the locations and normals of
existing edge intersections on the cell faces dual to e1 and e2). We
then construct Q as the quads dual to the cell edges on the primal
grid that cross h (new edge intersections are created when necessary
by intersecting h with the cell edges and interpolating the normals
associated with the end points of h). Since h lies inside the convex
hull of the boundary cycle b, the resulting quads on the patch P
always stay inside the discrete convex hull of b.

We shall prove that the recursive procedure always terminates
and constructs a P with the desired boundary b. In fact, by building
Q on a Manhattan path between e1 and e2, the length of the two
sub-cycles b1 and b2 are strictly less than the length of b. Hence
recursions in b1 and b2 are guaranteed to terminate. To show that
∂ (P) = b, we observe that when b = /0, ∂ (P) = /0 = b. When b 6= /0,
assuming that ∂ (P1) = b1 and ∂ (P2) = b2, we have ∂ (P) = ∂ (Q	
P1 	P2) = ∂ (Q)	b1 	b2 = b.

The divide-and-conquer method naturally leads to a top-down
implementation on the octree grid. Let patchProc[N,b] be the
recursive procedure that patches a boundary cycle b inside an octree
node N. By choosing the splitting planes as the center planes of N,
patchProc[N,b] first splits b into sub-cycles bi, j that lie in the
children nodes Ni. Then patchProc[Ni,bi, j] is called for every
child node Ni and its enclosing sub-cycles bi, j . Note that each bi, j
is bounded by a cell that is half the size of b, hence the recursion
is guaranteed to stop after H levels, where H is the depth of the
octree. To compute the symmetric difference of the patch and the
existing dual surface, we only need to negate the intersection/non-
intersection property of the cell edges dual to the quads in the patch.

5.4 Generate signs

The patching process results in a new set of intersection edges Ê
on the primal grid dual to the patched dual surface Ŝ. Since ∂ (Ŝ)
is empty, Ê possesses a consistent sign configuration. We intro-
duce a recursive procedure signProc[N,s], which generates signs
in an octree node N given a sign s at the lower-left-far corner, and
returns the resulting signs at its eight corners as a list. At a leaf
node, signProc[N,s] infers signs at the other seven corners based
on the intersection edges. At an internal node, signProc[N,s] first
calls signProc[N1,s], where N1 refers to the lower-left-far child,
and obtains signs at the corners of N1 as si(i = 1, . . . ,8). Then
signProc[Ni,si] is called for every other child node Ni (i 6= 1) with
the sign si at their lower-left-far corners.

6 Surface reconstruction

After signs are determined at each grid point, a closed surface sep-
arating grid points with opposite signs can be constructed using
contouring algorithms. If the locations of the intersection points
are stored on the edges during scan-conversion, a primal contour-
ing algorithm can be used, such as the Marching Cubes algorithm
[Lorensen and Cline 1987]. If normals are attached to the intersec-
tion points in addition to their locations (i.e., a Hermite represen-
tation), we can use Dual Contouring [Ju et al. 2002] to reproduce
sharp features in the original model. In either case, the polygons on
the contoured surface do not self-intersect, and can be consistently
oriented to face the external volume.

6.1 Examples

Figures 8 and 9 demonstrate repairing CAD models with sharp fea-
tures using the presented method. Figure 8 (a) shows a mechanical
part built using a state-of-the-art 3D design software. Note that it is
not unusual for CAD software to produce hanging polygons (shown
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Figure 8: A mechanical part model containing hanging triangles (a),
the dual surface with highlighted boundary cycles (b), reconstructed
surfaces using Marching Cubes (c) and Dual Contouring (d).

in this example) during CSG operations. The gears model in figure
9 (a) is also not closed, since the polygons between the top and the
bottom gear does not lie between an internal volume and an exter-
nal volume. In both examples, boundary cycles are detected on the
corresponding dual surfaces, in which each boundary edge is shared
by one quad (figure 8 (b)) or three quads (figure 9 (b)). The final
repaired surfaces are reconstructed using the Marching Cubes algo-
rithm (figure 8 (c) and figure 9 (c)) and Dual Contouring (figure 8
(d) and figure 9 (d)). Observe that the dual-contoured surfaces elim-
inate the errors in the original models while accurately preserving
the rest of the geometry, such as sharp edges and corners.

Polygonal models obtained from 3D range images typically have
gaps, holes or intersecting polygons. In figure 10, the Bunny model
is repaired using octree grids at different depths and reconstructed
using Marching Cubes. Observe that the holes at the bottom of the
Bunny are repaired at every grid resolution with reasonable appear-
ance. The geometry of the original model away from the holes are
faithfully reproduced to the extent that the grid resolution allows.

To test the robustness of our algorithm, we synthetically distort
the Horse model on the left of figure 1 by randomly perturbing the
vertex locations in each triangle in the front part, and removing
one third of the triangles at random locations in the second part.
Despite the numerous self-intersections, gaps and holes on the dis-
torted model, the repaired model on the right consists of a single
closed surface with no self-intersecting triangles. Observe that the
repaired surface reproduces both noisy and smooth geometry on the
original model.

Our model repair method can process huge models efficiently.
Figure 11 (a) shows the statue of Michelangelo’s David recon-
structed at 1mm resolution from 3D range scans. The model con-
tains over 56 million triangles, and takes up over 1 Gigabyte of
memory to store. Figure 11 (b) shows the repaired model using
an octree of depth 13, in which each leaf cell on the octree mea-
sures approximately 1mm on the model. The repair process finishes
within an hour using less than half a gigabyte of memory. Sign gen-
eration on the entire grid, in particular, takes only 45 seconds . Fig-
ure 11 (c) takes close-up looks at the model before and after repair.
Observe again that the repaired surface accurately reproduces the
geometry details, and generates reasonable patches where the data
is missing from the original model.

Table 1 reports the time and space consumed for repairing the
various models in the paper. We also include the results of repair-
ing other models from the Stanford 3D Scanning Repository, such
as the Dragon and the Happy Buddha, as well as the David model
reconstructed at 2mm resolution. The experiments are performed
on a consumer-level PC with 1.5GHz CPU and 2GB memory, and
I/O operations are included when measuring the scan-conversion

and contouring time. Observe that while scan-conversion is sensi-
tive to the size of the input model, the performance of sign genera-
tion and surface reconstruction only depends on the complexity of
the octree.

7 Discussion and future work
The goal of our work is to design a simple algorithm for generat-
ing a closed surface robustly for any arbitrary input mesh. Due to
the simplicity of our approach, however, the repaired region on the
reconstructed surface may not look optimal with respect to the sur-
rounding mesh, particularly in places of complex holes with mul-
tiple boundaries or highly curved shapes. Moreover, curved inter-
nal membranes may not be satisfactorily removed as a result of the
simple divide-and-conquer approach. Without compromising the
robustness of our method, we can improve the appearance of the
repaired surface by exploring other means by which the boundary
cycles on the dual surface can be patched. For example, boundary
cycles that are within a distance threshold can be combined, and
existing geometry can be taken into consideration when patching
the cycles. We are also investigating incorporation of diffusion-
based methods [Davis et al. 2002] for creating more natural looking
patches on the dual surface with the surrounding geometry.

Due to the use of an intermediate volume, the reconstructed sur-
face using our method may contain topological redundancy in the
form of handles, cavities, and disconnected components (the genus
of each repaired model in this paper are reported in Table 1). Since
a large number of topology repair methods operate directly in the
volume domain, we can adapt these methods to work on the octree
volume produced by the second step (i.e., sign generation) so that a
topologically acceptable surface is produced by contouring. In par-
ticular, we can apply the robust seed algorithm [Andujar 1998] to
remove internal cavities, and the topology simplification algorithm
[Wood et al. 2002] to reduce the genus of the surface. Morphologi-
cal operators introduced in [Nooruddin and Turk 2003] can also be
applied to remove small features on the repaired volume if desired.

Finally, to reduce triangle count due to the use of contouring al-
gorithms, we can output the reconstructed mesh to a polygon sim-
plifier, such as the simplification envelop technique [Cohen et al.
1996] and QSlim [Garland and Heckbert 1997], to obtain a deci-
mated model. Alternatively, if Hermite data are present, QEF sim-
plification method [Ju et al. 2002] can be applied directly on the
octree grid, so that the dual-contoured mesh is already simplified to
the desired extent.

8 Conclusion
In this paper we present a robust method for repairing polygonal
models. Given an arbitrary polygonal model represented as poly-
gon soups, our method always produces a closed and consistently
oriented surface. As a volumetric approach, our method employs an
octree grid and memory-efficient operations that are capable of pro-
cessing huge models. The output surface is guaranteed to be defect-
free due to a simple and robust algorithm for generating signs on the
octree grid. Sharp features in the input model can also be faithfully
reproduced by storing Hermite data.
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A Existence of consistent signs

Proposition: An octree grid with intersection edges E can be consistently signed if
and only if its dual surface S contains no boundary edges, that is, ∂ (S) = /0.

Proof: Recall that the signs at the grid points are consistent if every intersection edge
exhibits a sign change. In other words, the intersection edges E form a bi-partite graph
on the grid. Hence, a consistent sign configuration exists if and only if every closed
circuit of edges on the grid contains an even number of intersection edges.

To prove necessity, we observe that each boundary edge on the dual surface is dual
to a cell face on the primal grid with an odd number of edge intersections. Since a cell
face is a closed circuit of four edges, every cell face should contain an even number
of intersection edges if a consistent sign configuration exists, hence the dual surface
contains no boundary edges.

To prove sufficiency, we assume that a consistent sign configuration does not exist.
Among all closed circuits on the grid containing an odd number of intersection edges
(referred to as odd circuits), we find the one with the shortest length and denote it as
b. Following a similar argument as in Section 5.3, b can be split into two sub-circuits,
b1 and b2, by a band of cell faces Q in the middle (see figure 7 left). Since b1 and
b2 are strictly shorter than b, they can not be odd circuits. Hence the ring of edges
surrounding Q is an odd circuit, which implies that at least one cell face in Q contains
an odd number of intersection edges. In other words, a boundary edge must exist on
the dual surface. This completes the proof.
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