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Figure 1: Completing a hole in a point-based model. In the darker colored region we removed sample points to demonstrate the surface
completion technique. In the middle right the region is filled with a smooth patch conforming with the densely sampled areas, and the result
of our context-based surface completion is on the right.

Abstract

Sampling complex, real-world geometry with range scanning de-
vices almost always yields imperfect surface samplings. These
“holes” in the surface are commonly filled with a smooth patch that
conforms with the boundary. We introduce a context-based method:
the characteristics of the given surface are analyzed, and the hole is
iteratively filled by copying patches from valid regions of the given
surface. In particular, the method needs to determine best match-
ing patches, and then, fit imported patches by aligning them with
the surrounding surface. The completion process works top down,
where details refine intermediate coarser approximations. To align
an imported patch with the existing surface, we apply a rigid trans-
formation followed by an iterative closest point procedure with non-
rigid transformations. The surface is essentially treated as a point
set, and local implicit approximations aid in measuring the similar-
ity between two point set patches. We demonstrate the method at
several point-sampled surfaces, where the holes either result from
imperfect sampling during range scanning or manual removal.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations

1 Introduction

Most shapes are nowadays acquired with range scanning devices.
The initial representation of the shape consists of several properly
transformed depth images, resulting in an irregular point sampling
of the surface. As some areas are invisible from some viewpoints, a
fair number of scans are necessary to cover the whole surface, often
requiring a tedious manual effort to find the right setup. Contact-
free sensing, which typically facilitates triangulation for distance
estimation, can access only those regions on the surface that are vis-
ible (and well reflecting) from a certain set of viewpoints. Physical
probing requires enough open space around the point on the sur-
face. Consequently, sampling complex, real-world geometry will
almost always be imperfect in the sense that some regions of the
visible physical surface are not covered with sample points, i.e. the
surface sampling contains holes.

Additionally, surface editing operations can lead to large holes in
the surface (i.e. when a part of an object is removed). These holes,
as well, have to be filled in a manner that preserves/conforms with
the natural properties of the shape (see e.g. Figure 1).

A common way to complete the surface is to fill these holes with
a smooth surface patch that meets the boundary conditions of the
hole [Curless and Levoy 1996; Davis et al. 2002; Ilic and Fua 2003;
Liepa 2003; Verdera et al. 2003]. While this works well for holes
that are small compared to the geometric variation in the surface,
in general, more complex treatment is required: First, if fine geo-
metric detail is present around the hole, it should not be missing in
the completed region. Second, the topology of the missing piece
could be more complex than a disk. Thus, we aim at completing
missing parts of the surface by transferring appropriately sampled
and fitting regions of the shape. We call the process of completing
a surface based on the context of the given surface context-based
surface completion. The figures in this document demonstrate that
context-based surface completion progresses over smooth comple-
tion in many instances.
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Our work is motivated by the success of recent methods for im-
age completion by example [Criminisi et al. 2003; Drori et al. 2003;
Jia and Tang 2003; Sun et al. 2003]. These methods build upon non-
parametric texture synthesis methods [Efros and Leung 1999; Efros
and Freeman 2001; Wei and Levoy 2000; Ying et al. 2001]. The ba-
sic idea is that textures, and to some extent missing parts in images,
can be synthesized by tessellating regions with proper replications
of pieces taken from some specified set of examples. In our work
we employ the same framework: we complete missing parts in the
surface by integrating patches taken from a given example set. Note
that texture synthesis methods make use of the given spatial struc-
ture of the data (the regular grid of an image or the connectivity
of a mesh). In contrast, the sampling of a two dimensional surface
in three dimensions lacks such structure: the sampling is irregular
and does not give rise to a parameter domain. This leads to several
particular problems for completing a point sampled surface:

1. Defining a patch is difficult because of the missing parameter
domain.

2. The boundary of a hole specifies neither the topology nor the
geometry of the missing part.

3. The additional degrees of freedom in 3D transforms require
aligning and orienting the patch with its surroundings.

4. There are no standard measurements for similarity between
two (possibly partial) point sets.

Here we present a method for completing irregularly sampled
surfaces. Instead of making a priori assumptions on the character-
istics of the missing parts, the existing surface is analyzed, and by
exploiting intra-shape similarities and neighborhood information,
holes are filled incrementally. The main features of our approach
are:

Multi-scale: The identification of the missing surface parts, the
surface analysis, the similarity measures, and the filling, are
applied in a top-down fashion, where finer details are inferred
from coarser scales.

Signatures: We fit algebraic functions locally as a signature of the
local surface. The signature is a low-dimensional descriptor
used for measuring similarities between point sets.

Alignment: To fit the selected patch to its surrounding, a rigid
transformation is applied. To further improve the fit, we ap-
ply an iterative closest point (ICP) technique together with a
series of small elastic warps.

Another unique feature is that we directly process the point rep-
resentation including the associated normals, which are computed
from range images. However, few steps of the algorithm need a
functional representation of parts of the surface. This functional
representation should allow approximation of the surface on sev-
eral scales as well as a parameter-free representation. We locally fit
algebraic functions as proposed in [Ohtake et al. 2003]. However,
here we compute implicit fits on all levels of the spatial hierarchy.

2 Related Work

Surfaces reconstructed from points acquired by scanners are typi-
cally incomplete and contain holes. Thus, surface reconstruction
algorithms naturally need to address sampling issues (e.g., [Amenta
et al. 1998; Bajaj et al. 1995]). Recently, with reconstruction meth-
ods becoming a standard way of geometry creation, several works
have been dedicated to the problem of hole filling or repairing the
reconstructed surface [Clarenz et al. 2004; Davis et al. 2002; Liepa
2003; Savchenko and Kojekine 2002; Verdera et al. 2003].

Davis et al. [2002] address the case where the holes are geo-
metrically and topologically complex. In this case triangulation
algorithms cannot be employed before applying some repairing.
Their algorithm first constructs a volumetric signed distance func-
tion around the surface samples. Then an iterative Gaussian convo-
lution propagates adjacent distance values to fill the holes.

Verdera et al. [2003] also use an implicit function to represent the
surface. They model a PDE for the smooth interpolation of a given
hole based on the normal vector field around the hole. In [Clarenz
et al. 2004] a surface is repaired by an optimization process. It
minimizes the integral of the squared mean curvature (the so-called
Willmore energy) to yield a smooth surface.

Liepa [2003] introduces a geometric method for hole filling.
Here it is assumed that the reconstructed incomplete surface is al-
ready triangulated. The method first detects the holes automatically
by identifying the closed loops (i.e. boundary edges of the hole).
Then the hole is triangulated [Barequet and Sharir 1995], and the
triangulation is refined so that the triangle density agrees with the
density of the triangles of the surroundings of the hole. Finally, a
fairing step is performed to smooth the area of the filled hole.

All of the above methods assume generic smoothness priors on
the missing surface and, thus, create a smooth patch that covers the
hole. In contrast, our method learns the characteristics of the given
surface and repairs the holes in a context-sensitive manner.

A notable exception is the work of Savchenko and Ko-
jekine [2002], which is closer in spirit to our strategy. Their method
warps a given shape model towards the missing region of the given
surface using control points. This is followed by a fairing step along
the boundary of the hole. Unlike our approach, their method is not
automatic and requires some manual intervention. Also, the method
is not context-based, does not involve learning, and a prior model
must be given in advance.

As mentioned in the introduction, we were inspired by example-
based image completion methods [Criminisi et al. 2003; Drori et al.
2003; Jia and Tang 2003], and by the advances in texture synthesis
[Efros and Leung 1999; Efros and Freeman 2001; Wei and Levoy
2000; Ying et al. 2001]. Our surface synthesis method has much in
common with the work of Hertzmann et al. [2002]. Both methods
apply an object-space analysis to infer the characteristic of one part
of an object onto some other part. Hertzmann et al. extend their no-
tion of image analogy in [Hertzmann et al. 2001] to an object-space
analogy. The behavior of a given curve is applied to other curves us-
ing statistical learning strategies. Curve analogies are similar to our
approach in that finding the correspondence and proper transforma-
tion between arbitrary manifold shapes is challenging – though the
restriction to curves somewhat simplifies the issues of topology and
parameterization.

3 Data structure and terminology

Given a set of points {pi} together with normals {ni} sampled
from a manifold surface S, we wish to add points qi to the set {pi}
so that the sampling of S is sufficient everywhere. The main idea is
to add points that are rotated, translated, and possible warped copies
of points from another region (this resembles the idea of fragment
or patch-based techniques for images).

In contrast to techniques for images, surfaces lack a natural un-
derlying spatial structure, which defines where and how to search
and select adequate regions (i.e. patches). We explicitly construct
such a structure by building a nested spatial hierarchy Ω over the
set of points. The largest cell Ω0 contains all points; a cell ω ∈ Ωl

on level l is subdivided into cells on level l+1. In particular, we use
boxes as cells and subdivide in a regular fashion at the mid-edges
and the midpoint (i.e. {Ωl, l ∈ {0, 1, . . .}} is an octree).

A cell ω containing a sufficient number of points ||{pi ∈ ω}|| >
m allows constructing a local surface approximation based on the
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Figure 2: The reconstruction of a hole introduced in David’s hair is applied top down, coarse to fine, where a large under-sampled area in the
hair is first reconstructed at large coarse scales, and then refined through the levels of the hierarchy.

(a) (b) (c) (d) (e) (f)

Figure 3: Completion process on block torus. Starting from the initial shape (a), based on some coarse approximation of the missing surface
(b) we complete a large part of the model (c). Next, using the updated approximation of the missing surface (d), we complete the hole at a
finer level of the hierarchy (e), leading to the final result in (f).

points. We choose to approximate the surface implicitly by fitting
a trivariate low-degree polynomial fω ∈ Πd : ω → R. The cell
is subdivided if it contains enough points and the max norm er-
ror maxpi∈ω |f(pi)|/||∇f(pi)|| exceeds a given threshold ε. This
idea is similar in spirit to the approach of Ohtake et al. [2003],
however, without the need of using overlapping cells and blending
in the region of overlap.

After this construction, we distinguish between surface cells and
whether this classification is valid or invalid. In particular, cells are
classified as follows:

Surface cells intersect the current surface approximation as de-
rived from the current point set. A surface cell is:

Valid if it contains at least m points, i.e. there are sufficiently
many points for surface representation in the cell.

Invalid if it contains less than m points, i.e. more points
should be added to the cell for an appropriate represen-
tation of the surface.

Void cells contain no part of the current surface approximation.
As every cell with at least m points by construction contains
part of the surface approximation, every void cell contains less
than m points.

Note that the distinction between void and invalid surface cells
is dynamically updated during the process of surface completion.
This is necessary since the finally completed surface is not known
in advance, and refinements on fine levels in the hierarchy can lead
to slight changes in the approximated surface so that the set of inter-
sected cells by the implicit surface might change (see also Figure 5).

Using this terminology we present an overview of the algorithm
in the next section and describe the details in subsequent sections.

4 Algorithm overview

The main idea of our approach can be stated as follows: For each
invalid surface cell, import and paste the content of a valid sur-
face cell that matches the surface approximation in and around the
empty cell.

However, the process is potentially repeated at finer levels: Only
if points have been imported at an appropriate level-of-detail, they
are accepted as the final surface representation. Otherwise, the im-
ported points are used merely as an intermediate representation to
compute an updated local surface approximation. Then the cell is
subdivided and the updated surface approximation is used to fill the
cells in the subtree. Note that during the process of updating the
surface approximation, the status of void and invalid surface cells
can change (see also Figure 5).

The first step is the construction of an initial octree. Starting from
the points in the largest cell, the octree is built based on the number
of points and the approximation error in each cell. The local im-
plicit approximations are built following the approach of Ohtake et
al. [2003]. However, any reasonable way of constructing a local ap-
proximation of the shape from the points inside a cell can be used.
An implicit representation f of the shape has the advantage that the
distance estimation could be done quickly using Taubin’s approxi-
mation [Taubin 1994], i.e. d(x, {f = 0}) ≈ |f(x)|/||∇f(x)||.

Note that a cell ω is subdivided only if the number of points
inside the cell is larger than m and the approximation error
maxpi∈ω |f(pi)|/||∇f(pi)|| is larger than ε. We use the depth
of the octree as a measure of shape complexity (i.e. the amount of
detail in that region of the shape).

Starting at the coarsest level, a shape signature (described in Sec-
tion 6) is computed for each cell in the level, based on the shape
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approximation at the next coarser level in the octree (in pseudocode
Fig. 4, Line 3).

Using the process explained in Section 5, a set of invalid surface
cells is determined (Line 4). For each invalid surface cell we com-
pute its adjacent valid surface cells at the same level in the hierarchy
(note that we further subdivide octcells if necessary). This ensures
that cells are surrounded by adjacent cells with a shape approxima-
tion at the same level in the octree. The set is ordered according to
the number of valid adjacent cells.

The first cell in the ordered set of invalid surface cells is pro-
cessed (Line 6). Based on the signature, a best matching valid sur-
face cell is identified (Line 7). See Section 6 for details.

The contents of the best matching valid cell are pasted into the
invalid cell (Line 8). This process requires finding an appropriate
rigid transform. To further align the imported points with the sur-
rounding shape we add a non-rigid transformation. Details of this
step are described in Section 7. The imported points are then used
to re-compute the local shape approximations in the cell (Line 12).

After filling the invalid cell with the points of the best match-
ing valid cell, the fit is evaluated. The imported points are finally
accepted and the status of the cell is changed to valid only if the
adjacent valid cells have no descendants (i.e. the completion pro-
cess has reached the level-of-detail of the surrounding cells). If the
imported points lack level-of-detail as compared to the surrounding
shape, they are discarded and only the updated local shape approxi-
mation remains for further use in the filling process (Line 13). Note
that this exploits the correlation between cell size and local shape
complexity.

This process is repeated until all cells are valid (or the maximum
depth in the octree is reached). The top-down, coarse to fine re-
construction of the hole is demonstrated in Figures 2 and 3, where
a large area of missing sample points is first reconstructed at large
coarse scales, and then refined through the levels of the hierarchy.

COMPLETE-SURFACE()

1 while Stop 6= 1 do
2 P ′ = P

3 ∀ ω ∈ Ωl COMPUTE-SIGNATURE(ω, Sl)

4 Ω′

l = FIND-INVALID-CELLS(Ωl, Sl)

5 while NotEmpty(Ω′

l) do
6 Find ω′

j ∈ Ω′

l s.t. ω′

j = argmaxj‖ValidNeighbors(ω′

j)‖

7 Find ωk ∈ Ωl \ Ω′

l s.t. ωk = argmink(Distance(ω′

j , ωk))

8 Fill ω′

j with points pi where pi ∈ ωk

⋂

P

9 P ′ = P ′
⋃

pi

10 endwhile
11 l = l + 1

12 Compute Sl based on P ′ using finer approximation
13 if (l > max level or Sl is fine enough around hole) then
14 Stop = 1

15 endwhile

Figure 4: Surface completion pseudocode.

5 Identifying invalid surface cells

The identification of a hole in a point-sampled surface, like other
topological features, is typically an ill-defined problem. Here we
use a simple heuristic that we found quite effective in practice. Nev-
ertheless, since the method might not be sufficient in complex cases,
the user can manually define invalid cells. The basic idea is to use
the local shape approximation and intersect it with all cells. If a cell
is intersected by the current shape approximation but contains less
than m points, more points should be added to form an accurate
representation of the surface in that cell.

(a) (b)

(c) ( d)

Figure 5: Illustrating the identification of a hole and the top-down
incremental filling: (a) The input set of points in red defines an
implicit surface (dashed curve) that intersects the large cell. (b) A
set of points (in blue) is imported. (c) The cell is subdivided and for
each sub-cell an implicit surface is defined based on the imported
points. Note that the upper right subcell is considered void. (d)
A set of points is imported and placed in the lower right sub-cell.
This is then followed by a re-evaluation of the implicit surfaces at
its siblings. Note that the lower left subcell is considered now void.

This approach limits the size of a hole: A hole in the surface sam-
pling needs to be small enough so that it can be covered by a shape
approximation at the coarser level of the octree. Conversely, be-
cause holes are only identified if they lead to cells with few points,
holes need to be at least as large as the cells at the maximum depth
of the octree.

Note that it is not enough to consider only cells with less than m
points as the cell subdivision terminates when the surface approx-
imation error is bounded. For example, a cell might well contain
many points and a local shape approximation with small error, how-
ever, some part of this shape approximation would not be covered
with points. One could argue that this “hole” is accurately covered
by the local shape approximation and there is no need to fill it. We
prefer to fill such holes so that the resulting point set represents a
sufficiently dense sampling of the surface everywhere.

Thus, it is necessary to look ahead in the subtree of valid surface
cells. Effectively, the candidate set for invalid surface cells consists
of all cells containing less than m points in the full octree resulting
from subdivision of the tree to maximum depth.

Given a cell ω ∈ Ωl containing less than m points, we need to
decide whether the cell is invalid (i.e. intersects the current surface
approximation) or void. A set Ξω of cells carrying a local shape
approximation is constructed. This set consists of:

1. The parent cell of ω. Note that this cell must contain a local
shape approximation as it is either filled with original points
or a shape approximation has been computed from an inter-
mediate step of the process.

2. All adjacent cells on the level of ω carrying a local shape ap-
proximation.

The elements in ω̂ ∈ Ξω are inspected in turn. Let fω̂ be the lo-
cal shape approximation of ω̂. If the zero set of fω̂ intersects ω
we define it to be invalid (and it has to be filled); otherwise it is
considered as valid and void.

To check efficiently for the intersection of {fω̂ = 0} and
ω, the following procedure is used. It assumes that quadratic
polynomials are used for a local implicit shape approximation
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Figure 6: The signature of the invalid cell (upper left corner) con-
tains the distances and directions computed on the colored set of
points to the surface together with the tree depth at each valid adja-
cent cell.

(other local shape approximation techniques might require other
approaches to check for intersection). Let the box be defined by
(x1, y1, z1), (x2, y2, z2).

1. The set {ci} of points is initialized to the corners of ω, i.e. the
set {(xi, yj , zk), i, j, k ∈ {1, 2}}.

2. The values fω̂(ci) are computed. If there exists at least one
positive and at least one negative value, ω intersects the shape
approximation and the procedure is terminated (i.e. this is a
trivial accept).

3. The derivatives ∇fω̂(ci) are computed. We call ω x-
monotone if the partial derivatives w.r.t. the x-direction have
the same sign. If ω is x, y, and z-monotone there is no inter-
section (i.e. this is a trivial reject).

4. Assume fω̂(ci) are all positive. The minimum of fω̂ is
bounded from below inside ω by

min
i,d∈{x,y,z}

cid
−

∣

∣

∣

∣

d1 − d2

2

∣

∣

∣

∣

fd(ci)

If the bound is positive, the minimum inside ω is positive, so
fω̂ is positive inside ω.

5. The box is subdivided regularly (i.e. eight sets of corner
points {ci} are generated) and the tests are repeated starting
from step 2.

Obviously, this definition of invalid surface cells depends on the
current set of local shape approximations. Once points are (tem-
porarily) filled and the local shape approximations are updated, the
void / invalid status has to be redefined.

6 Finding the best matching valid cell

Given a surface cell ω that has been identified as invalid, we want
to find a valid cell ω′ in a set Υ of cells with the same size as ω
so that ω and ω′ contain similar pieces of surface. This requires
a shape distance measure for cells and the generation of a suitable
set Υ, which are discussed in the following two sections. Then,
finding the best match is performed by iterating over all cells in the
candidate set and finding the cell whose distance to the invalid cell
is minimal.

6.1 The signature of a cell

Rather than computing the similarity measure directly, a vector-
valued signature is computed for each cell. The similarity of two
cells is then given as the weighted Euclidean distance of the shape
signatures.

The shape signature needs to be computed for valid as well as
invalid surface cells. For practical reasons, the computation of the
signature should be efficient. Also, we want to capture the shape at
the appropriate scale (as given by the depth in the octree) and the
amount of detail that is present at finer scales.

These considerations have led to the following main idea: The
signature of ω comprises by two elements: First, the shape at the
scale of the octree level is computed using the surface approxima-
tion in the cell at the next coarser level of the octree. This shape
approximation is available for valid as well as invalid surface cells.
Second, the amount of detail in ω is estimated as the depth of the
subtrees in adjacent valid cells.

The local shape approximation is evaluated at a set of symmet-
rically placed points. The symmetry allows us to compare cells
transformed according to the symmetry group. Let the shape of ω
be defined by (x1, y1, z1), (x2, y2, z2). We construct the following
sets of points {ci} (see also Figure 6):

1. A set of points {ci} inside the cell; specifically, the center,
the corners, the mid-edges, and the face-centers of ω, i.e.
((xb1 +xb2)/2, (yb3 +yb4)/2, (zb5 +zb6)/2), (b1, . . . , b6) ∈
{1, 2}6, b2k−1 ≤ b2k, k ∈ {1, 2, 3}.

2. A set of points {ai} in adjacent cells; specifically, the lo-
cation of centers of cells adjacent to ω: (x1, y1, z1)/2 +
(x2, y2, z2)/2 + (b1(x1 − x2), b2(y1 − y2), b3(z1 −
z2)), (b1, b2, b3) ∈ {−1, 0, 1}3.

We have found that the last set of points is particularly important as
it takes into consideration the neighborhood of ω.

The amount of level-of-detail lω in ω is a vector, which for each
valid cell adjacent to ω, contains the depth of the subtree in this cell.

The signature of ω consists of five components:

1. The vector of signed distances in the points ci evaluated using
the shape approximation of the parent cell of ω:

s
c
ω =

(

|fω̂(c1)|

||∇fω̂(c1)||
, . . .

)

.

2. The vector sa
ω of signed distances in the points ai, defined as

above, however, evaluated using the shape approximation of
the respective adjacent cells.

3. The vector of directions from the points ci to the closest point
on the surface approximation in the parent cell, approximated
here by nc

ω = (∇fω̂(c1), . . .).

4. The respective vector na
ω of directions from the points ai to

the closest point of the surface approximation in the respective
adjacent cell.

5. The vector of octree depth lω (note that we use different types
of implicit surface approximation as suggested by Ohtaka et
al. [2003], however, we have found that taking this difference
into consideration does not improve the signature).

Thus, the signature represents (mostly) a discrete sampling in ω
of an approximation to the distance field of the shape approxima-
tion in ω̂. Because fω̂ is a low-degree polynomial approximation,
the signature refers to a smooth version of the shape. Smoothing
depends on the size of the cell, or, equivalently, the level in the
hierarchy. This way, signatures are rather scale-independent. How-
ever, they reflect the amount of detail in the shape approximation
through lω .
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(a) (b) (c)

Figure 7: A simple 2D example of iterative non-rigid transformation implemented in MatLab for demonstration purposes. (a) The input
setting; the green surface needs to be aligned with the two pieces in blue. (b) The warped surface in red after one iteration. (c) After a second
iteration, the warped surface of (b) is warped again towards the blue pieces.

6.2 Weighted distances between signatures

The distance computation takes the different components of the sig-
nature into account. We distinguish between the distances, gradi-
ents, and octree levels, as well as between the points sampled in
the cell or in adjacent cells. In particular, the distance d(ω, ω′) is
computed as:

d(ω, ω′) = widc(ω, ω′)+ (1−wi)da(ω, ω′)+wldl(ω, ω′), (1)

where dc is the distance inside the cell

dc(ω, ω′) = wd‖s
c
ω − s

c
ω′‖ + (1 − wd)‖nc

ω − n
c
ω′‖, (2)

and da is the distance computed in adjacent cells

da(ω, ω′) = wd‖s
a
ω − s

a
ω′‖ + (1 − wd)‖na

ω − n
a
ω′‖. (3)

The distance between octree levels dl is essentially computed as
the Euclidean distance, however, only for those vector elements that
are defined in both, lω and l′ω .

The weight wi represents a trade-off between shape samples in-
side the cells and samples in adjacent cells, while ws represents the
trade-off between distances and (approximated) gradients.

The weighting between the shape match inside the cell and in
adjacent cells depends on the progress of the completion. As the
completion process advances, the local surface approximation im-
proves. At the same time, more detailed solutions require a better
local fit. Thus, we increase wi with the decreasing distance to the
maximum depth in the hierarchy.

6.3 The candidate set Υ

The candidate set Υ for a cell ω ∈ Ωl consists of valid cells with
the same size as ω. It contains all valid cells from the same level in
the octree, i.e. Ωl ⊂ Υ. However, a larger set of candidates leads to
better results. We enlarge the set by also adding all elements of the
symmetry group of the cell (i.e. rotations of the cell by π around
the canonical axes and reflections).

Nevertheless, for complex shapes that might still not generate
enough candidates, more candidates are generated by rotating the
point set by angles of π/2, π/3, . . . and then constructing an octree
over the rotated point set. This assures that the cells are aligned
along the same axes.

For some applications where a series of similar objects are
scanned, one can build a large training set with a rich set of ex-
amples. A class-based training set typically improves the perfor-
mance of an unsupervised learning process (such as we employ
here). However, in this work, we restricted the search to a single
shape, and we leave the analysis of the potential benefits of using a
large class of shapes for defining Υ for future work.

7 Transferring the sampled surface

Assume that we have determined a matching cell ω′ for an invalid
surface cell ω. The basic idea is to simply paste the points contained
in ω′ into ω (and then use that input for computing a new shape
approximation if the fit has to be repeated on a finer level). Note
that the shape distance measure is an average over several sampled
values. Even the best fit could be non-conforming with large parts
of the surrounding points. Thus, the inserted points are subjected
to a rigid and an additional non-rigid transformation to conform as
much as possible with a subset of the surrounding points.

7.1 Iterative rigid and non-rigid transformations

The points Fω to be inserted into ω are transformed to conform with
the points in adjacent cells. The procedure is inspired by iterative
closest point (ICP) procedures [Besl and McKay 1992; Chen and
Medioni 1992; Zhang 1992] but adds a non-rigid term.

The set of neighbor points Nω is determined by collecting points
in a ball around ω. The radius of the ball is incremented until at
least m/2 neighbor points are collected. For each of the points
pi ∈ Nω the closest point in pi(Nω) ∈ Fω is computed. Based on
this correspondence, a fitness-of-fit function can be defined as the
sum of Euclidean distances between corresponding points:

d(Nω,Fω) =
∑

pi∈Nω

||pi − pi(Nω)||
2. (4)

This function is first minimized subject to a rigid transform applied
to the inserted points, i.e.

min
(R,t)∈SE(3)

d(Nω,RFω + t). (5)

The translation is derived by aligning the centroids of the two sets;
the rotation is determined using the singular value decomposition
(SVD). The closest point relationships are updated based on the
rigid transformation (R, t) and the procedure is repeated until con-
vergence (this is essentially the iterative closest point procedure
(ICP)).

Next, an elastic warp function is determined to further minimize
the fitness functional. This non-rigid transformation T can be ex-
pressed as a polynomial in matrix form, i.e.

T = {tij} , tij = rij + cij + f1jx + f2jy + f3jz (6)

where {rij} are the coefficients of the rotation found in the first
step, {cij} are additional linear coefficients, and {fij} are coeffi-
cients of a quadratic function (note that fij = fji). Minimizing
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(a) (b)

Figure 8: A smooth area around the cuts in Igea’s face (a) is used
to complete the cuts with smooth fitting parts (b).

d(Nω,TFω) leads to a linear system in the unknown coefficients,
which can be solved for the coeficients. We have found that this
unconstrained solution sometimes leads to large quadratic coeffi-
cients {fij} representing strongly deforming, visually disturbing
non-rigid transformations. To avoid this, we add a regularization
term: the squares of the quadratic coefficients are minimized. This
leads to additional linear equations of the form fij = 0. The com-
bined linear system resulting from both minimizations has to be
solved in a least squares sense, which is done using the singular
value decomposition (SVD).

After applying the so-defined non-rigid transformation T to the
points in Fω , the closest point relationship is re-established and the
procedure is repeated. The process is illustrated in 2D in Figure 7.

8 Examples, limitations and performance

We have applied context-based surface completion to various point-
sampled surfaces. The example in Figure 1 shows a non-trivial ex-
ample where we removed a large set of samples from the hair of
the statue. The missing part is completed with details taken from
the existing parts of the hair. The completion process is fully au-
tomatic and is applied top down, where the first levels are coarse
and smooth, and the finer details are added at a finer level of the
hierarchy (see Figure 2).

Our training set is quite small as it is based only on the examples
provided by the given object. In all our examples, we have enriched
the training set by rotating the source objects by π/4 degrees in
each of the X, Y and Z directions, and used mirroring[Drori et al.
2003; Kwatra et al. 2003]. This extended data set allows completing
shapes with clear symmetric structure as in the “block-torus” model
shown in Figure 3. The building blocks that complete the missing
corner are taken from the opposite symmetric corner of the shape.
Note that the completion cannot be computed in one trivial copy-
and-paste step because the symmetry and appropriate scales are not
given a priori and have to be inferred during the completion process.

Figure 10(a-d) demonstrates that the filling adapts well to the
context of the surroundings. Note that in (d) the left side of the hole
is more bumpy than the top of the Bunny’s back. In the second row
(e-h), we added Gaussian noise to the Bunny’s surface to show that
the reconstruction of the hole works on different scales.

One of the advantages of using implicit surface approximation is
that it can easily deal with changes in topology. As explained, the

(a) (b)

Figure 9: The back area of the sculpture ”Youth” by Michelangelo
as reconstructed from the original scans (a). Context-based com-
pletion of the point-sampled surface(b).

identification of a hole is derived from the implicit surface approx-
imations. As long as the initial approximation covers the insuf-
ficiently sampled regions, the subsequent levels refine and recon-
struct the finer details. This is demonstrated in Figure 11, where a
broken knot is repaired. In the top row, the broken knot has only
one boundary, while in the bottom, the missing surface patch has
two boundaries (i.e. is a topological cylinder rather than a disk).

Although our technique is fully automatic, user intervention is
certainly possible. The user might want to specify what regions
should be used for completion – effectively just limiting the exam-
ple set. This extends 2D clone brushes used in image retouching
applications (e.g. [Adobe 2002]) to surfaces in 3D.

Figures 12, 13 and 14 show raw point-sampled data acquired
using only a few range scans so that some areas on the models
are not adequately covered with sample points. We have addition-
ally created large holes to demonstrate our method on surfaces with
fine but non-stochastic geometric detail (in contrast to the relatively
stochastic examples of the bunny and the knot, or the flat surface
of the block torus). Note that the hole in the bone (see Figure 12)
is completed with a surface that continues the ridge along the bone,
whereas in a smooth completion, the ridge and the structural details
on the bone are washed out. Similarly, the holes in the complex
shape of the CAD model (Figure 13) are completed using the shape
geometric features in context with the holes. The chair in Figure 14
is an interesting example: The large artificial holes introduced in
the fabric are a challenge because of the overall smoothly varying
surface with a clearly structured pattern. The problem lies in the
fact that it is difficult to match high frequency geometry which is
not sampled densely enough. The results show that our approach
successfully aligns an imported patch with the surface. However,
the slight misalignment in the detail structure is perceived as a jump
in the lightness. Another example of the limitations of our method
is shown in Figure 15, where an artificial hole introduced in Igea’s
eye area is not completed with the similar patch from the other eye
area. As in 2D techniques, the completion process has no seman-
tics. Thus, the completed surface is geometrically similar but loses
the meaning.

The example shapes have fairly different numbers of point sam-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: The tail of the Bunny is removed. Reconstructed by a smooth interpolation in (c) and (g), and by a context-based filling in (d) and
(h). Note in (d) that the reconstructed area adapts to the context of its surroundings. In the second row, we added Gaussian noise to the Bunny
surface to show that the reconstruction respects the context and performs equally well on different scales.

(a) (b) (c) (d)

Figure 11: A broken knot is repaired. This example shows that the filling technique is not sensitive to the topology. As long the the initial
algebraic surface approximation covers the missing part, the subsequent levels refine and reconstruct the finer details.

(a) (b) (c)

Figure 12: Completion of a missing region in a scan of a human bone (a). Smooth completion of the hole (b). Our method completes
successfully the ridge in the surface from its context (c).

885



ples: We used the 1.7M points version of the ’Youth’ model and the
0.5M points model of ’David’, available from the Digital Michelan-
gelo Project [Levoy et al. 2000]. The registered range scans of the
CAD, chair and bone models contain 8M, 1.6M and 0.5M points
respectively. The size of the other models is in the range of 10k to
150k points. We ran our experiments on an Intel Pentium 4 2.4Ghz
with 1024Mb RAM on OS Win2000. The computation consists
of three main parts: (i) preprocessing of the input point set, (ii)
the computation of the approximated surface and (iii) the fit of an
imported part. We have found that the computation times are sur-
prisingly small: the preprocessing time directly depends on the size
of the input set and takes up to five minutes for the largest models.
The approximation of the surface requires up to 20 seconds per iter-
ation, where each temporary fitting of points requires one iteration.
Searching and fitting a patch based on the current surface approxi-
mation takes around 10 seconds. Most of the computation time is
spent on the computation of an implicit surface to approximate the
given point set. The search is the fastest step because we compute
the signatures of all valid cells during preprocessing.

Our approach scales well with the number of points. However,
we implemented an in-core system, so that in practice the number
of points is limited. The main limitation of our algorithm is that
the identification of the missing regions (or “holes”) relies on a lo-
cal surface approximation that provides a reasonable initial smooth
surface approximation. If the points are too noisy, or poorly sam-
pled, this process might fail. Another limitation is that the result of
the surface completion procedure can only contain copies from the
example set. If no appropriate examples exist, the match might be
poor. A more subtle problem results from the irregular sampling.
Our method is limited by the relation between the sampling density
and the detail frequency. To capture fine structural details the cell
must be small enough with respect to the detail size. Figure 14
shows a chair whose cushion consists of frequency details which
are too high compared to the sampling density. Thus the synthesis
of the surface cannot faithfully capture the cushion details.

9 Conclusions and future work

In this work we have introduced a context-based method for com-
pleting point-sampled surfaces in areas where the sampling is in-
sufficient. In contrast to filling these areas with a smooth patch, our
approach copies and adapts parts of the surface that respect the ge-
ometric characteristics around the filled region. The method is fully
automatic and applicable in a wide range of scenarios. It is particu-
larly useful to repair models resulting from range scanning as well
as for all modelling operations that remove parts of the surface.

The spatial hierarchy has an obvious impact on the resulting sur-
face. In the future, we would like to explore other spatial hierarchies
and compare the results with the octree we have used. Another
interesting avenue is to enlarge the search space of examples by
building a shape database. However, a large set of examples would
possibly require optimized search strategies for the identification of
the best matching cell.

Our results show that the encouraging results of context-based
methods can be extended to general surfaces without a regular pa-
rameterization. We would like to extend the method further to other
classes of objects without an innate regular parameter domain, such
as deformable or moving shapes, and light fields. For even better
practical usage it seems important to couple the completion of the
surface geometry with completion of surface textures using image
completion methods.

(a)

(b)

Figure 13: Due to the complexity of CAD models, scans typically
result with holes. We slice the CAD model to show the interior and
exterior holes (a) and their completion (b).

(a) (b)

(a) (b)

Figure 14: A chair model with artificially introduced holes. Our
method was not able to align the completed patches with the small
regular details of the chair’s fabric.
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(a) (b)

Figure 15: Igea’s eye area is artificially removed (a). Our method
completes the removed area using a matching patch from the hair
(in pink) (b).
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