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Conformal parameterization of mesh models has numerous applications in geometry processing. Conformality is desirable for
remeshing, surface reconstruction, and many other mesh processing applications. Subject to the conformality requirement, these
applications typically benefit from parameterizations with smaller stretch. The Angle Based Flattening (ABF) method, presented
a few years ago, generates provably valid conformal parameterizations with low stretch. However, it is quite time-consuming
and becomes error prone for large meshes due to numerical error accumulation. This work presents ABF++, a highly efficient
extension of the ABF method, that overcomes these drawbacks while maintaining all the advantages of ABF. ABF++ robustly
parameterizes meshes of hundreds of thousands and millions of triangles within minutes. It is based on three main components:
(1) a new numerical solution technique that dramatically reduces the dimension of the linear systems solved at each iteration,
speeding up the solution; (2) a new robust scheme for reconstructing the 2D coordinates from the angle space solution that avoids
the numerical instabilities which hindered the ABF reconstruction scheme; and (3) an efficient hierarchical solution technique.
The speedup with (1) does not come at the expense of greater distortion. The hierarchical technique (3) enables parameterization
of models with millions of faces in seconds at the expense of a minor increase in parametric distortion. The parameterization
computed by ABF++ are provably valid, that is they contain no flipped triangles. As a result of these extensions, the ABF++
method is extremely suitable for robustly and efficiently parameterizing models for geometry-processing applications.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; G.1.6 [Numerical Anal-
ysis]: Optimization—Constrained optimization; J.6 [Computer Aided Engineering]:

General Terms: Algorithms

Additional Key Words and Phrases: Mesh processing, parameterization, conformality

1. INTRODUCTION

With recent advances in computer graphics hardware and digital geometry processing, parameterized
surface meshes have become a widely used geometry representation. The parameterization defines a
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correspondence between the surface mesh in 3D and a 2D domain, referred to as the parameter space.
In the general case, the paramerizations are expected to be bijective, that is one-to-one. However for
most practical applications, a weaker requirement of local bijectivity is sufficient. Local bijectivity is
achieved when the planar mesh has no flipped (inverted) triangles. In the context of this article, the
term validity implies local bijectivity. The principal uses of parameterization are texture mapping and
geometry editing.

— Texture mapping is the oldest application of parameterization. The parameter space is covered with
an image which is then mapped onto the model through the parameterization. With the introduc-
tion of programmable GPUs, more general attributes can be mapped onto the model in real time
(e.g., BRDFs, bump maps, displacement maps, etc.). It is even possible to completely represent the
geometry of the model in parameter space, leading to the geometry images approach [Gu et al. 2002].

— Geometry Editing is the second, increasingly popular, application domain. Using parameterization, it
is possible to replace complex 3D algorithms operating on the surface with much simpler 2D compu-
tations performed in parameter space. Applications that benefit from parameterized representation
include multiresolution editing [Lee et al. 1998], surface fitting [Hormann and Greiner 2000], mesh
morphing [Praun et al. 2001], remeshing [Alliez et al. 2003], and extrapolation [Levy 2003], to name
just a few.

For all of these applications, the quality of the result depends heavily on the amount of deformation
caused by the parameterization. In the ideal case, areas and angles are preserved through the map-
ping, that is the parameterization is isometric. To reach this goal, the approach described in Maillot
et al. [1993] minimizes a matrix norm of the deformation tensor. Unfortunately, only a small class of
surfaces, that is developable surfaces, can be isometrically parameterized. Therefore, depending on the
application, existing parameterization methods attempt to minimize different distortion components,
such as angle deformation (conformal/harmonic parameterizations), length deformation (stretch), or
area deformation.

1.1 Previous Work

Floater and Hormann [2004] provide an extensive survey of the state-of-the-art in parameterization
research. We briefly review the major techniques proposed for planar parameterization. We refer the
reader to Floater and Hormann [2004] for a more detailed discussion of the numerous techniques
available.

For many geometry-processing applications such as remeshing and surface reconstruction, the preser-
vation of shape (angles) during mapping is of major concern. Angle preservation is typically addressed ei-
ther from the harmonic point of view (Dirichlet energy) or from the conformal point of view
(Cauchy-Riemann equation). In the context of computer graphics, the first discrete version of harmonic
maps was proposed in Eck et al. [1995]. Desbrun et al. [2002] used a discretization of the Dirichlet
energy suggested in Pinkall and Polthier [1993] to construct free-boundary harmonic maps. Gu and
Yau [2002] used the same discretization formula to approximate the Laplace Beltrami operator. The
main drawback of all of these methods is that triangle flips can happen in the presence of obtuse angles,
breaking the local bijectivity requirement on the mapping. The harmonic mapping method described
in Floater [1997] is based on Tutte’s barycentric mapping theorem [Tutte 1960] and does not suffer
from this limitation. A bijective mapping is guaranteed provided that the mesh boundary is fixed to
a convex polygon. A simpler approximation of harmonicity is proposed in Floater [2003]. The alter-
native, conformal perspective is used by Lévy et al. [2002]. The authors use a discretization of the
Cauchy-Riemann equation for constructing free-boundary maps. The discrete formulation of conformal
energy they propose is equivalent to Desbrun et al. [2002] and hence suffers from the same triangle
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.
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Fig. 1. Parameterization comparison: (a) Levy et al. [2002]/Desbrun et al. [2002]—the linear formulation provides an angle
preserving parameterization, but introduces significant stretch (Error metrics E(α) = 0.00075, Lstretch

2 = 99.3, and Lshear
2 =

0.013—the metrics are explained in Section 6); (b) Stretch minimization [Sander et al. 2001] (E(α) = 0.0017, Lstretch
2 = 1.032,

and Lshear
2 = 0.156); (c) ABF (E(α) = 0.0006, Lstretch

2 = 1.096, and Lshear
2 = 0.072). The ABF result combines good angle

preservation with low stretch. The run-times are given in Table I (Cow has 6K faces).

flip problem [Lévy et al. 2003]. Note that in general harmonic and conformal maps are not identical
[Floater and Hormann 2004].

Fixed (convex) boundary approaches such as Eck et al. [1995] and Floater [1997, 2003] typically gener-
ate significantly more distortion than free-boundary techniques. However, only a few free-boundary con-
formal parameterization methods are guaranteed to avoid triangle flips. The MIPS method
[Hormann and Greiner 2000; Hormann 2001] minimizes a nonlinear function of the first fundamental
form of the mapping. The method is time-consuming and the results demonstrated in the paper are
limited to parameterizations of simple surfaces with near-convex boundaries. Degener et al. [2003]
use another function of the first fundamental form to measure conformality. Using a state of the
art iterative hierarchical solver, they report times of 5 minutes for parameterizing meshes with 60K
faces.

The Angle Based Flattening (ABF) method [Sheffer and de Sturler 2001] uses a very different ap-
proach from most other techniques. It defines an angle preservation metric directly in terms of angles.
It first computes the parameterization in angle space and only then converts it into 2D coordinates.
In addition to avoiding flips, its important advantage is that in addition to closely preserving the an-
gles, it typically produces parameterizations with low area (and stretch) deformation (see Figure 1).
This is particularly noticeable when comparing the results of ABF to linear, free-boundary techniques
[Desbrun et al. 2002; Lévy et al. 2002]. In Section 6.2, we discuss the causes for this different be-
haviour. In addition to the advantages mentioned, Sheffer and de Sturler [2001] describe a simple
post-processing procedure which can be used to eliminate overlaps in the parameterization. However,
since the optimization procedure used by ABF is numerically expensive, and due to numerical errors
occurring when reconstructing the 2D coordinates from the angles, ABF becomes impractical for meshes
with more than 30K faces. Liesen et al. [2001] discuss methods to speed-up ABF but do not provide
an implementation of these. Zayer et al. [2004] recently proposed a different strategy for solving the
nonlinear optimization problem defined by ABF. Their method requires a couple of minutes to parame-
terize medium-sized models (10K faces). It does not address the numerical issues in the reconstruction
phase. We will study ABF in depth in Section 2 and propose new techniques to overcome the approach’s
limitations.

Several authors proposed parameterization techniques for area/stretch preservation during mapping.
In Desbrun et al. [2002], a local measure of area preservation was introduced. Aiming at optimally
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mapping a signal onto the surface, Sander et al. [2001, 2002] minimize a nonlinear stretch metric. The
method is particularly well suited for texture mapping. Similar to Hormann and Greiner [2000] and
Degener et al. [2003], the authors use a hierarchical solver to speed up the nonlinear optimization.

Several recent papers address the trade-off between angle and stretch/area deformations [Desbrun
et al. 2002; Degener et al. 2003; Yoshizawa et al. 2004]. This is typically achieved by introducing energy
functionals such as those described previously for each deformation component and minimizing their
combined functional (sum or product).

To speed up the parameterization process for large models, many authors propose hierarchical pa-
rameterization techniques [Sander et al. 2001; Ray and Lévy 2003; Hormann 2001; Degener et al.
2003; Aksoylu et al. 2005] which use mesh multiresolution structures. Our work combines sophis-
ticated numerical tools with a multiresolution approach to achieve maximal speed up and generate
angle preserving low stretch parameterizations of huge meshes.

1.2 Overview

This article introduces ABF++—an extension of the angle preserving ABF method for parameterizing
large meshes. It consists of two complimentary techniques, direct ABF++, suitable for parameterizing
medium to large meshes, and hierarchical ABF++, for parameterizing huge meshes with millions of
triangles.

The direct ABF++ method generates provably valid (no flipped triangles), conformal, low stretch
parameterizations of meshes with several hundred thousand faces in a couple of minutes by using two
new tools:

— A new solution mechanism based on algebraic transforms reduces the dimension of the Hessian used
in ABF by a factor of five. This reduction results in an improvement of up to 10× in speed. Since
speed up is achieved through solely numerical manipulations, it does not come at the cost of increased
parametric distortion.

— A new technique for retrieving 2D coordinates from angles performs the conversion robustly on
meshes of any size. The technique uses a global linear solver and hence does not suffer from the
numerical stability problems encountered by previous greedy algorithms.

The second component of ABF++, the hierarchical ABF++ parameterization scheme, is used to fur-
ther speed up the parameterization procedure and parameterize models of millions of triangles. The
scheme uses direct ABF++ to parameterize a simplified mesh. Then it proceeds to compute the param-
eterization for the full model, using a local relaxation scheme utilizing a multiresolution hierarchy. The
scheme is carefully tailored to parameterize huge meshes in second.

Both techniques have significant advantages compared to existing methods. The direct ABF++ is
significantly more efficient and robust than previous nonlinear conformal parameterization techniques.
While the direct ABF++ is slower than linear free-boundary conformal methods, it introduces signif-
icantly less stretch. The hierarchical ABF++ is an order of magnitude faster than the direct version.
As demonstrated by the examples (Section 6), it is 4 to 5 times faster than the fastest free-boundary
technique with which we are familiar [Ray and Lévy 2003]. At the same time, it computes valid param-
eterizations with only slightly higher parametric distortion than direct ABF++.

The rest of the article is organized as follows. Section 2 reviews the standard ABF technique. Section 3
describes the novel solution mechanism that uses sequential linearly constrained programming and
algebraic transformations to speed up the parameterization computation. Section 4 introduces a robust
new scheme for converting the solution from angle space to 2D coordinates. Section 5 describes our
hierarchical solution technique. Section 6 demonstrates the results of direct and hierarchical ABF++
parameterization. It provides a comparison of the two methods to other popular techniques in terms of
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.
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Fig. 2. A (sub)mesh generated without enforcing the reconstruction constraint.

both distortion and speed (Section 6.1) and discusses (Section 6.2) the reasons for the differences in the
distortion. Finally, Section 7 summarizes the presented research.

2. THE ABF METHOD—A BRIEF REVIEW

The Angle Based Flattening (ABF) method [Sheffer and de Sturler 2001] is based on the observation
that the set of angles of a 2D triangulation uniquely defines the triangulation up to global scaling
and rigid transformations. Building on this observation, ABF first computes the parameterization in
angle space and then converts it to 2D coordinates. The angle space formulation makes this technique
particularly suitable for reducing the angular distortion of the mapping.

2.1 Formulation

In angle space, the minimized function is simply

E(α) =
∑
t∈T

3∑
k=1

1
wt

k

(
αt

k − βt
k

)2, (1)

where αt
k are the unknown planar angles, and βt

k are the optimal angles. The index t goes over the set T
of triangles in the mesh, and the index k goes over the angles in each triangle. The weights wt

k are set to
1

βt
k

2 to reflect relative rather than absolute angular distortion. To prevent degenerate configurations of

the angles, they are sometimes scaled during the solution (details can be found in Sheffer and de Sturler
[2001]).

To provide a set of values that defines a planar parameterization, a number of constraints are incor-
porated into the solution:

— Triangle validity (for each triangle):

∀t ∈ T, CTri(t) = αt
1 + αt

2 + αt
3 − π = 0; (2)

— Planarity (for each interior vertex):

∀v ∈ Vint, CPlan(v) =
∑

(t,k)∈v∗
αt

k − 2π = 0, (3)

where Vint is the set of interior vertices, and v∗ is the set of angles incident on vertex v;
— Reconstruction (for each interior vertex)—this constraint ensures that edges shared by pairs of

triangles have the same length (Figure 2):

∀v ∈ Vint, CLen(v) =
∏

(t,k)∈v∗
sin αt

k⊕1 −
∏

(t,k)∈v∗
sin αt

k�1 = 0. (4)

The indices k ⊕ 1 and k � 1, respectively, indicate the next and previous angles in the triangle.
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.
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2.2 ABF Solution Mechanism

The resulting constrained minimization problem is formulated using Lagrange multipliers (λTri, λPlan,
λLen). The augmented objective function F is:

F (x) = F (α, λTri, λPlan, λLen) = E +
∑

t
λt

TriCTri(t) +
∑

v
λv

PlanCPlan(v) +
∑

v
λv

LenCLen(v).

Sheffer and de Sturler [2001] minimize the (nonlinear) augmented objective function F using
Newton’s method, as follows:

while ‖∇F (x)‖ > ε

solve ∇2 F (x)δ = −∇F (x)
x ← x + δ

end

(5)

The size of the Hessian matrix ∇2 F (x) is 4n f + 2nint, where n f = |T | is the number of mesh triangles,
and nint = |Vint| is the number of interior vertices. There are 3n f variables and n f + 2nint Lagrange
multipliers. The linear system ∇2 F (x)δ = −∇F (x) is solved using a sparse direct linear solver (SuperLU
[Demmel et al. 1999]).

Zayer et al. [2004] proposed simplifying the solution process by applying the log function to the
reconstruction constraint (Equation 4), replacing the product by a sum. This results in a much simpler
matrix structure of ∇2 F (x). The downside of this conversion is that the matrix becomes ill-conditioned,
and hence the system cannot be stably solved by direct solvers. Using an iterative solver instead, the
authors quote times of 237 seconds for a model of 25K faces. Given such times, the iterative procedure
is actually slower than our implementation of the original solution technique using SuperLU, which
takes half of this time to parameterize models twice the size (Table I).

3. SPEEDING-UP ABF

This section introduces a solution technique that dramatically improves the performance of the angle-
based parameterization. To speed up the solution process, we will first simplify the system solved by
each Newton iteration, and then find a much smaller system to solve.

3.1 Sequential Linearly Constrained Programming

The ABF formulation is based on constrained minimization of a quadratic form. The quadratic form
is very simple, since its optimum is already known (the optimal angles β), while the constraints
(Equation 4 in particular) are rather complex. To overcome this complexity, we propose to use sequential
linearly constrained programming [Nocedal and Wright 2000]. This technique for solving constrained
minimization problems considers the constraints as linear at each iteration. In other words, it neglects
the terms coming from the second order derivatives of the constraints in the Hessian matrix ∇2 F (x)
(see Nocedal and Wright [2000]). This simplifies the system solved at each iteration of the nonlinear
solver (5) at the expense of a slightly increased number of iterations.

The linear system ∇2 F (x)δ = −∇F (x) solved at each step thus becomes:[
� Jt

J 0

] [
δα

δλ

]
=

[
b1

b2

]
where: (6)

� = diag
(

2
wt

k

)
, J =

[
∂2 F

∂λi∂αt
k

]
, b1 = −∇α F, b2 = −∇λF.
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Since the constraints are considered linear, the upper-left bloc (�) is now a simple diagonal matrix. The
lower-right block is null. Based on this particular matrix structure, it is now possible to dramatically
reduce the dimensions of the matrix inverted at each iteration.

3.2 First Matrix Split

System 6 can be rewritten as follows:

�δα + Jtδλ = b1 (7)
Jδα = b2. (8)

It is now feasible to separately compute the step vector δλ for the Lagrange multipliers, and express
the step vector δα for the variables as a function of δλ:

J�−1 Jtδλ = b∗ where b∗ = J�−1b1 − b2 (9)
δα = �−1(b1 − Jtδλ). (10)

The first line (9) is obtained by multiplying (7) by J�−1 and substituting Jδα using (8). The second line
(10) is obtained by multiplying (7) by �−1. Note that since � is diagonal computing �−1 is trivial. Using
these expressions, the algorithm (5) can be rewritten as follows:

while ‖∇F (x)‖ > ε

compute b, J, �

solve Equation 9 → δλ

δα ← �−1(b1 − Jtδλ) (Equation 10)
λ ← λ + δλ ; α ← α + δα / ∗ x = (α, λ) ∗ /

end

The initial linear system of dimension 4n f + 2nint has been replaced by a smaller linear system
of dimension n f + 2nint, where the matrix J�−1 J depends only on the Jacobian of the constraints
J and the diagonal � (see Equation 9). Solving the system gives the step vector δλ for the Lagrange
multipliers, and it is easy to compute the step vector δα for the variables from δλ (see Equation 10).
Since the size of the linear system solved at each iteration is much smaller than in the initial al-
gorithm, this algorithm is much faster. We now show that it is possible to reduce the size of the
system even further by analyzing the structure of the matrix J�−1 Jt and applying a similar kind of
substitution.

3.3 Second Matrix Split

To analyze the particular structure of J�−1 Jt , we can split the Jacobian of the constraints J into two
submatrices, J1 and J2:

J =
[

J1

J2
,

]
, (11)

where J1(n f × 3n f ) is the Jacobian of CTri constraints, and J2(2nint × 3n f ) is the Jacobian of the CPlan
and CLen constraints. Note that J1 has a very simple structure:

J1 =




1 1 1 0 0 0
1 1 1

. . .

0 0 0 1 1 1


 .
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Moreover, its rows are orthogonal and linearly independent. We now decompose J�−1 Jt as follows:

J�−1 Jt =
[

�∗ J∗t

J∗ J∗∗

]
where




�∗ (n f × n f ) = J1�
−1 Jt

1

J∗ (2nint × n f ) = J2�
−1 Jt

1

J∗∗ (2nint × 2nint) = J2�
−1 Jt

2

. (12)

Using the bloc decomposition of the matrix J�−1 Jt , Equation 9 becomes

[
�∗ J∗t

J∗ J∗∗

] [
δλ1

δλ2

]
=

[
b∗

1

b∗
2

]
. (13)

In other words,

�∗δλ1 + J∗tδλ2 = b∗
1 (14)

J∗δλ1 + J∗∗δλ2 = b∗
2. (15)

Since J1 is orthogonal and �−1 is diagonal, the matrix �∗ = J1�
−1 Jt

1 is diagonal. We can now express
δλ2 independently as the solution of a linear system:

(J∗�∗−1 J∗t − J∗∗)δλ2 = J∗�∗−1b∗
1 − b∗

2. (16)

Equation 16 was obtained by multiplying (14) by J∗�∗−1, then substituting J∗δλ1 using (15). Conse-
quently, the vector δλ1 can be computed as a function of δλ2 :

δλ1 = �∗−1 (
b∗

1 − J∗tδλ2

)
(17)

by multiplying (14) by �∗−1.
Note that computing δλ2 requires solving a linear system of dimension 2nint, whereas the dimension of

the initial problem is 4n f +2nint. Based on the Euler formula n f ≈ 2nint, therefore 4n f +2nint ≈ 10nint.
Hence, the proposed matrix manipulations result in a factor of five reduction in the size of the linear
system solved at each iteration of the nonlinear solver.

3.4 ABF++ Solution Mechanism

Using these matrix splitting expressions, the solution procedure can be rewritten as follows:

while ‖∇F (x)‖ > ε

compute b, J, �

solve Equation 16 → δλ2

compute δλ1 (Equation 17)
compute δα(Equation 10)
λ1 ← λ1 + δλ1 ; λ2 ← λ2 + δλ2 ; α ← α + δα / ∗ x = (α, λ) ∗ /

end

(18)

Compared to the original Newton formulation (5), the new method requires several additional it-
erations to converge (typically 8 to 10 instead of 5). However, at each iteration, a five times smaller
matrix is inverted. We found that using the SuperLU direct solver for solving Equation 16 gives the
best results in terms of performance. This is consistent with other recent research [Sorkine et al. 2003;
Sumner and Popovic 2004], which consistently indicates that direct solvers outperform the more popu-
lar iterative techniques. Combined with the reconstruction technique described in Section 4, the final
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algorithm is often more than ten times faster than the original. As a result, models on the order of 100K
triangles can now be parameterized in a minute or two. An additional advantage is a reduction in the
memory size required to store the matrices. The results section (Section 6) compares the efficiency of
the parameterization with and without the proposed speed up.

4. RETRIEVING THE EUCLIDIAN 2D COORDINATES

After the angles are computed, the final stage of the parameterization has to convert them into ac-
tual 2D coordinates. The original ABF technique [Sheffer and de Sturler 2001] used an unfolding
mechanism in which the coordinates were computed one vertex at a time, using a front propagation
procedure. The drawback of this method is that while each single computation generates a very small
numerical error, these accumulate as the front progresses. The error starts to show up in models of
several thousand triangles and often breaks the parameterization completely for models with more
than 30K triangles. This article replaces this error prone conversion mechanism with a robust new
conversion technique. The technique formulates the conversion problem as a global linear system and
computes all the vertex coordinates simultaneously.

Consider a triangle t in 2D with vertex coordinates (P1, P2, P3) and corresponding angles αt
1, αt

2 and
αt

3. The ratio of triangle edge lengths ‖−−−→P1 P3‖ and ‖−−−→P1 P2‖ is

‖−−−→P1 P3‖
‖−−−→P1 P2‖

= sin
(
αt

2

)
sin

(
αt

3

) .

Therefore, the vector −−−→P1 P3 can be expressed as a function of −−−→P1 P2 and the angles of the triangle,

−−−→P1 P3 = sin
(
αt

2

)
sin

(
αt

3

)
(

cos
(
αt

1

)
sin

(
αt

1

)
− sin

(
αt

1

)
cos

(
αt

1

)
)

−−−→P1 P2. (19)

Thus for each triangle, given the position of two vertices and the angles, the position of the third vertex
can be uniquely derived. The unfolding procedure used by ABF, fixed one edge and then repeatedly used
Equation 19 to compute the rest of the vertices, one at a time. In place of this, we can consider the set
of vertex positions and the constraints imposed on them,

∀t = ( j , k, l ) ∈ T, M t(Pj − Pk) + Pl − Pj = 0,

where: M t = sin
(
αt

2

)
sin

(
αt

3

)
(

cos
(
αt

1

)
sin

(
αt

1

)
− sin

(
αt

1

)
cos

(
αt

1

)
)

.

(20)

Note that we introduce two equations per triangle for the x and y coordinates of the vertices. The angles
of a planar triangulation define it uniquely up to rigid transformation and global scaling. Therefore, we
introduce four constraints which eliminate these degrees of freedom. This is done by fixing two vertices
sharing a common edge. Without loss of generality, consider Pnv−1 and Pnv as the fixed vertices, where
nv is the total number of vertices in the mesh.

To fix the vertices, we set Pnv−1 and Pnv to (0, 0) and (1, 0), respectively, and eliminate the relevant
variables. The number of equations is 2n f . It is larger or equal to the number of variables 2(nv − 2)
(Euler formula). Hence, to solve the system, we need to use a least-squares formulation.

min
P1...Pnv−2

Ep(P ) =
∑

t=( j ,k,l )∈T

‖(M t(Pj − Pk) + Pl − Pj ‖2. (21)
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Appendix 1 shows that this minimization problem is well defined and has a unique minimum for any
selection of M t . It also proves that the minimization has the necessary reconstruction property, namely
that given as input a set of angles αt

k which correspond to a planar triangulation, the resulting planar
mesh will have the same angles. Thanks to the reconstruction property, the new conversion mechanism
guarantees the validity of the resulting parameterization. To solve this minimization problem, we need
to solve a single linear system (of full rank, see Appendix 1). The system is solved using the direct
SuperLU solver.

An important advantage of the global conversion mechanism is an opportunity to speed up the angle
space computation by reducing the number of iterations of the nonlinear algorithm (Algorithm 18).
Using the new conversion mechanism, we obtain valid, conformal, low stretch parameterization with
the tolerance ε set to 1. In contrast, using the unfolding procedure, ε had to be set to as little as 1e−6 to
obtain satisfactory results. The two reasons for this are as follows.

— For a set of angles to define a planar triangulation, they have to satisfy Equations (2), (3), and (4) up
to a reasonable tolerance. However, using an unfolding procedure, it is not enough for each constraint
to be satisfied independently. Since unfolding accumulates error, the overall combined error has to
be very low as well. We eliminate this limitation when using the global solver. Hence, the overall
tolerance ε can now be set to reflect the sum of the errors.

— The global minimization problem (Equation 21) has a unique minimum for any selection of M t . Thus
the global solver will find a solution, even if the angles are not strictly planar. In our experiments for
meshes with 10K and more triangles, setting ε as high as 1 gives nearly identical results as when
setting it to 1e−6. Note that the extreme case of using the original 3D angles (without applying ABF
at all) would give identical results to linear conformal mapping [Lévy et al. 2002]. Consequently,
using a larger ε is undesirable.

The increase in tolerance reduces the number of iterations performed by the angle space solver in half.
The new direct ABF++ method is based on the combination of the fast angle space solution (Section 3)

and the robust conversion mechanism previously described. The new method maintains all the benefits
of ABF in terms of conformality, low stretch, and guaranteed parameterization validity. It is, however,
significantly more efficient and, in contrast to ABF, remains robust for meshes of arbitrary size.

5. HIERARCHICAL PARAMETERIZATION

The direct ABF++ performs well for meshes, with up to 300K faces. For larger meshes, solving the linear
system becomes quite time-consuming. More importantly, with the increase in the size of the stored
matrices, memory becomes the bottleneck of the process. Hence to efficiently parameterize huge meshes
with hundreds of thousands and millions of triangles, we propose a hierarchical parameterization
procedure.

The basic idea of a hierarchical (or multiresolution) approach is to reduce the problem size, then solve
the smaller problem, and finally derive the solution to the original problem, using the multiresolution
hierarchy. In this work, we follow this approach to solve the parameterization problem for huge meshes.
Our method is divided into three successive stages:

— 3D mesh simplification and mesh hierarchy construction (Section 5.1);

— parameterization of the simplified, coarse mesh using direct ABF++ (Sections 3 and 4);

— coarse to fine parameterization (Section 5.2).

The stages are visualized in Figure 3.
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Fig. 3. Stages of the hierarchical ABF++ algorithm.

5.1 Mesh Simplification

The mesh simplification is performed through a sequence of edge collapse operations. We prefer the
edge collapse simplifier due to the control it provides on the triangle shape in the coarse mesh, and the
compact simplification history produced during the simplification steps. Similar to Ray and Lévy [2003],
we use the volume-based geometric error [Lindstrom and Turk 1998] to select the edge to collapse at
each iteration. We introduce two modifications to the typical edge selection procedure aimed at reducing
the parameterization distortion and speeding up the parameterization process.

The first modification is aimed at avoiding extremely acute and extremely obtuse angles during sim-
plification. Such angles may cause numerical problems during the coarse mesh parameterization as
well as during the reconstruction process, slowing down the procedure. Therefore, during simplifica-
tion we disallow collapses that introduce extreme angles. Based on experiments, we set the limit to
2.5◦. Thus, after each edge collapse, all the angles in adjoining triangles have to be in the range of
[2.5◦, 177.5◦]

The second restriction applies to boundary edge collapses. The reconstruction procedure that follows
introduces less distortion if the boundary of the 2D mesh does not change drastically. To facilitate this,
we forbid edge collapse operations, collapsing a boundary vertex towards the interior.

During the edge collapse process, the simplification history is stored in the form of a list of edge
collapse records sufficient for performing the reverse vertex split operation.

5.2 Coarse to Fine Parameterization

Following simplification, the resulting coarse mesh is parameterized using the direct ABF++ procedure.
The final stage of the algorithm uses this parameterization to compute a parameterization of the original
mesh using a coarse to fine procedure. This procedure uses the list of edge collapse records stored by
the simplification process to add vertices to the parameterized mesh, one at a time. It begins with
the simplified 3D mesh and its corresponding coarse parameterization. The original 3D connectivity
and the corresponding fine parameterization are constructed by carrying out a sequence of vertex split
operations, reversing the simplification process. The splits are performed using the list of edge collapse
records, reversing one collapse operation at a time.

For each vertex split, the mesh connectivity and the 3D coordinates of the reconstructed vertex are
restored based on the edge collapse record. The algorithm then computes a valid parameterization for
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Fig. 4. Notations used in vertex reconstruction: (a) interior vertex, (b) boundary vertex.

the current mesh by computing the 2D position of the reconstructed vertex and adjusting the positions
of the adjacent vertices, as follows.

(1) It first sets the 2D coordinates P of the newly reconstructed vertex v using a variation of the DCP
method [Desbrun et al. 2002]. The coordinates of an interior vertex are set to

P = 1∑
wtk

∑
(t,k)∈v∗

wtk Pt
k⊕1,

where the sum runs over all the triangles adjacent to v, Pt
k⊕1 are the 2D coordinates of the next

vertex in the triangle t, and wtk are standard harmonic weights [Eck et al. 1995] (Figure 4). Since
the reconstruction is performed one vertex at a time, the 2D coordinates of the adjacent vertices
are well defined. The weights wtk are computed on the current 3D mesh. If v is a boundary vertex,
the following formula [Desbrun et al. 2002] is used instead

[
P x

P y

]
=

∑
(t,k)∈v∗

(
cot

(
αt

k⊕1

)
1 cot

(
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k�1

) −1
−1 cot
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)
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) )
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k�1

x

Pt
k�1

y


 , (22)

see Figure 4.
(2) The algorithm checks that the computed vertex placement does not introduce flipped triangles into

the surrounding parameterized mesh. If the check fails, the method sets the vertex’s 2D coordinates
to the center of the kernel of the planar polygon formed by the adjacent vertices. Kernel coordinates
do not preserve any parameterization quality but provide a valid solution with no flipped triangles.
For the models we tested, about 0.02% of the vertices (20 out of 100K) were introduced using kernel
insertion. Note that we use vertex split for reconstruction. Hence, if the mesh before the split is valid,
the triangles adjacent to the vertex being split form a star polygon with a nonempty kernel. The split
vertex is located in the kernel of this polygon. Hence the subpolygon into which the reconstructed
vertex is introduced is also a star polygon. Therefore it has a nonempty kernel. Since direct ABF++
generates valid parameterizations, by induction we obtain that a kernel always exists. And therefore
the resulting parameterizations are always valid. The subsequent local smoothing reduces the
parameterization distortion caused by the kernel placement.

(3) Finally, the method performs one iteration of local smoothing. It updates the planar coordinates of
the adjacent vertices and then recalculates the coordinates of the current vertex. The new coordi-
nates are computed using the same formulas as in Step 1. The relaxation is constrained, namely, if
moving the vertex will cause a triangle flip, the vertex is left in place.

The choice of a simple linear technique for vertex placement and the small number of vertices re-
located at each stage make the reconstruction process extremely fast and memory-efficient. Since the
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.



ABF++: Fast and Robust Angle Based Flattening • 323

Fig. 5. Textured and parameterized models. The 2D parameterizations are colored using the 3D normal map.

Fig. 6. Texture mapping the David model (700K 	). (left) The seams used for cutting the model; (center) texturing using HLSCM;
(left) texturing using HABF++. Notice the extreme difference in stretch.

vertices of the fine mesh are introduced using only local relaxation, the optimization is less accurate
than direct ABF++. However, despite its simplicity, the hierarchical technique provides excellent re-
sults, introducing only a minor increase in the parameterization distortion compared to direct ABF++
(Table II).
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Table I.
1K	 6K	 10K	 50K	

hierarchical ABF++ 0.14 0.9 1.5 3.5
direct ABF++ 0.3 1.5 3 16
ABF 1.3 10 27 125
HLSCM 0.03 0.2 0.5 16.5
[Ray and Lévy 2003]
Zayer et. al 1 30 110 NA
[Zayer et al. 2004]
MIPS 20 NA NA NA
[Hormann and Greiner 2000]
Degener et. al NA 33 50 300
[Degener et al. 2003]
Stretch NA 8.5 19.3 52
[Sander et al. 2001]

Timing comparison (in Seconds), when available, for direct/hierarchical ABF++ and other
free-boundary techniques for small to medium models.

6. RESULTS AND DISCUSSION

6.1 Examples and Statistics

We tested both the direct and hierarchical methods on a large set of meshes varying from 1K to several
million faces (Figures 3, 5, 8, and 6). Closed models were cut into a single topological disc using Sheffer
and Hart [2002]. The direct ABF++ method does not require any parameter tuning by the user. The
hierarchical ABF++ requires the user to specify a simplification rate. We used a rate of 95% for all but
one model (for the 4.M	 pelvis, the rate was 98%). We did not employ the overlap eliminating post-
processing procedure proposed in Sheffer and de Sturler [2001], hence some overlaps are visible in the
resulting models. Given the details in Sheffer and de Sturler [2001], implementing this post-processing
in the ABF++ framefwork is straightforward.

The results of our runs are summarized in Tables I–III. Table I compares run-times (when available)
for our two methods and other existing parameterization techniques for models with up to 50K faces.
For the two ABF++ methods, ABF, and HLSCM [Ray and Lévy 2003], we use our implementation of
the methods [Graphite 2003]. The HLSCM method is a hierarchical extension of the free-boundary
linear LSCM [Lévy et al. 2002] technique. It is, to the best of our knowledge, the fastest free-boundary
technique available to date. Run-times for the stretch minimizing method [Sander et al. 2001] were
provided by the authors. For the other techniques, the times were taken from the respective papers
(note that earlier publications, likely used slightly slower machines). Table II compares timing and
parametric distortion for parameterization of medium to large models (50K to 230K faces). The original
ABF method runs out of physical memory (on a 1G RAM machine) for models of above 100K faces.
Table III compares the hierarchical ABF++ method and HLSCM for very large meshes. Direct ABF++
fails on meshes this size, due to memory limitations.

We use several metrics to measure the parametric distortion. Similar to Sander et al. [2001], we
considered the first fundamental form of the mapping (computed per triangle):

S(u, v) : R2 → R3; G(S) ≡
[

∂S
∂u

2 ∂S
∂u

∂S
∂v

∂S
∂u

∂S
∂v

∂S
∂v

2

]
. (23)
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Table II.
Number Runtime Angular

Model of Faces Method (sec) Shear Stretch Distortion
camel 78,144 HABF++ 6 0.0463 1.6019 0.000129

DABF++ 46 0.0235 1.4864 6.43e-5
ABF 690

HLSCM 34 0.0282 13.7945 0.00017
Stretch 127 0.22683 1.0534 0.0518

rocker 80,354 HABF++ 5 0.0238 1.0897 3.86e-5
arm DABF++ 46 0.0153 1.0905 2.3e-5

ABF 976
HLSCM 36 0.0160 3.9198 2.71e-5

horse 96,966 HABF++ 7 0.0398 1.3851 4.81e-5
DABF++ 84 0.0401 1.3981 3.22e-5

ABF FAIL
HLSCM 44 0.0299 31.6283 6.32e-5

santa 151,558 HABF++ 10 0.0178 1.1623 2.2e-5
DABF++ 71 0.0137 1.1378 1.59e-5

ABF FAIL
HLSCM 71 0.0166 140.7869 2.02e-5

teeth 233,204 HABF++ 18 0.0227 1.4166 2.08e-5
DABF++ 538 0.020 1.4771 1.62e-5

ABF FAIL
HLSCM 111 0.0466 165 0.0339

Parameterization comparison of standard ABF, hierarchical LSCM (HLSCM), direct (DABF++), and hierarchical (HABF++) ABF++ for medium
to large models. For the camel model, we also added the statistics for the method of Sander et. al. [2002] to highlight the difference between
stretch preserving and conformal techniques. The shear (conformality) error is roughly identical for all four conformal methods. The angle
based methods, however, generate significantly less stretch. Note that the optimal value for stretch is 1. While direct ABF++ is slower than
HLSCM, its hierarchical version is actually significantly faster. We do not provide error metrics for ABF since, for all the above examples, the
reconstruction procedure used by ABF failed (due to numerical problems). ABF ran out of memory for the horse and larger models.

Table III.
Number Runtime Angular

Model of Faces Algorithm (sec) Shear Stretch Distortion
bust 605,846 HABF++ 107 0.0298 241.05 2.51e-5

HLSCM 305 0.042 1280 0.0042
David 698,572 HABF++ 50 0.0386 1.8954 3.12e-5

HLSCM 351 0.065 42.4 0.0060
pelvis 4,241,328 HABF++ 819 0.0077 1.2001 3.4e-6

HLSCM FAIL

Parameterization statistics for large models: hierarchical ABF++ and HLSCM. The direct ABF++ runs out of
memory for this size of models.

To measure L2 stretch, we used the same formula as Sander et al. [2001]. To measure conformality as
derived from S, we measure L2 shear:

Lshear
2 =

√√√√√∑
t∈T

(
∂S
∂u

∂S
∂v∥∥ ∂S

∂u

∥∥ ∥∥ ∂S
∂v

∥∥
)2

area3D(t)∑
t∈T

area3D(t)
. (24)

The second component of conformality, the equal stretch property ∂S
∂u

2 ≡ ∂S
∂v

2, was measured as described
in Mogilnitsky [2004]. For all the compared techniques, the error was negligible (less than 0.003). Hence
we did not include it in the tables. Similar to Sheffer and de Sturler [2001], we also measured the angular
distortion E(α)

3n f
(Equation 1) for the different parameterizations.
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Fig. 7. Impact of simplification rate of hierarchical ABF++ on parametric distortion: (a) shear, (b) stretch. For the 95% rate
that we use, we get an increase of 0.004 in shear and 0.025 in stretch compared to the direct method.

Fig. 8. Hierarchical ABF++ for huge model (605K) with very high area to perimeter ratio. For angle preserving mappings such
as ABF++, this results in extreme stretch (241.1). The stability of the method is not affected. The two images show the iso-lines
on the surface at different frequency to highlight the orthogonality preservation at all the points on the surface. By comparison,
the stretch introduced by HLSCM was about five times larger (1280).

The timing for all but one model are computed on a 1.7GHz Pentium M (1G RAM) machine. For the
largest model, the pelvis (4.2M faces), a slightly stronger PIV 2.4GHz machine was used.

The run-time comparison demonstrates that direct ABF++ is up to an order of magnitude faster than
the standard version. Moreover for all the examples with above 50K faces, the standard ABF fails to
accurately reconstruct the coordinates from the angles due to numerical problems. The shear introduced
by both direct ABF++ and HLSCM is very low, with one method performing better on some models,
and the second on others. While direct ABF++ is slower than HLSCM, it introduces significantly less
stretch, an important advantage for many applications.

For all the examples, hierarchical ABF++ is significantly faster than HLSCM. Compared to the di-
rect ABF++ implementation, it slightly increases the distortion (in terms of both stretch and shear).
However, it still introduces an order of magnitude less stretch than HLSCM, as demonstrated by the tex-
ture in Figure 6. The distortion increases with larger simplification rates (Figure 7). For inputs of 200K+
faces, a 95% simplification rate means that the coarse level mesh contains 10K+ triangles. Parameter-
izing the coarse mesh using the standard ABF would take about 30sec (Table I). In contrast, using direct
ABF++, the parameterization of the coarse 10K mesh takes 3 seconds, and the hierarchical parameter-
ization of the full 200K face mesh (including reconstruction) takes only 18sec (Table II). Therefore, even
within the hierarchical framework, it is impractical to use the standard ABF instead of direct ABF++.

Both the direct and hierarchical ABF++ methods remain stable even on meshes with very high
stretch (which cause huge scale variations in the parameterized mesh), as demonstrated by Figure 8.

The last example, Figure 9, demonstrates the application of our method to the generation of a
normal—mapped simplified model of the pelvis. The original model has 4.2M triangles. Our hierarchical
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.



ABF++: Fast and Robust Angle Based Flattening • 327

Fig. 9. Our method applied to generate a normal-mapped simplified model of a pelvis (4.2M	).

method generates a conformal single-chart parameterization of this model in about 14min (Figure 9
(a)). The simplified normal-mapped model has only 8K triangles but, using the normal map, the visual-
ization preserves all the details of the original model (Figure 9 (c)). To generate a more compact texture
space, the parameterized (2D) mesh was cut manually and packed into a square domain using Lévy
et al. [2002].

6.2 Discussion

The numerical and visual comparisons throughout the article consistently indicate that ABF and its ex-
tensions create angle-preserving parameterizations with significantly lower stretch than linear angle-
preserving methods (LSCM/DCP). In this section, we conjecture as to the reasons for this difference. In
this discussion, we will consider the LSCM formulation [Lévy et al. 2002], however, we expect the same
argument to apply to DCP [Desbrun et al. 2002] due to the equivalence between the methods [Lévy
et al. 2003]. The main observation to remember is that, in contrast to the continuous case, for most 3D
meshes, there exists no truly conformal (angle-preserving) mapping to 2D (the sum of angles around a
vertex in 2D must be 2π , while the sum can be arbitrary in 3D). Hence, the minimum of a functional
measuring the conformality of a mapping will not be zero for most meshes. As a result, the choice of
different functional formulations can lead to very different minimizers.

LSCM is based on the observation that if a function is conformal, so is its inverse. Hence, LSCM
minimizes a metric of the conformal energy of the inverse (3D to 2D) parameterization. The metric
is quadratic and therefore easy to minimize. The energy functional defined by LSCM per triangle is
proportional to the area of the triangle in (u, v) space. Therefore, the energy can be reduced by reducing
area. LSCM avoids degenerate configurations by pinning two vertices, making the energy functional
postive-definite. The solution depends on the vertices pinned. It appears that to reduce the energy
functional, LSCM reduces the 2D area of triangles in regions of high distortion. This causes the extreme
stretch we observed.

This concurs with the observation made by Hormann and Greiner [2000] explaining why using Dirich-
let energy to minimize/measure parametric distortion is suboptimal. Instead they measure Dirichlet
energy per parameter-space area. This scaling prevents triangle shrinkage (but makes the energy
nonlinear and hence difficult to minimize).
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The ABF formulation is based on pure angular quantities, and is independent of triangle size in
the 3D or 2D space. Hence similar to MIPS, it does not suffer from triangle shrinkage and therefore
introduces significantly less stretch than LSCM/DCP.

7. SUMMARY

We have presented a new robust and scalable conformal parameterization technique. The first com-
ponent of this technique, the direct ABF++ method, is applicable to meshes of up to 300K faces. It
is faster than existing nonlinear free-boundary techniques, parameterizing meshes of 100K+ faces in
1 to 2 minutes. The hierarchical version of the method scales to meshes of millions of triangles. Both
methods compute provably valid, conformal parameterizations with very low stretch. The hierarchical
ABF++ is faster than any existing free-boundary technique we are familiar with.

APPENDIX

1. REPRODUCTION PROPERTY

In this section, we show that the conversion mechanism from angle to coordinate space (Section 4)
has the reproduction property. For this we first need to show that the functional that we minimize
(Equation 21) has a unique minimum. We then show that this minimum is characterized by the fact
that, if the αt

k angles define a 2D triangulation, then the minimizer of Ep provides such a triangulation.
The system of equations (20) can be rewritten as

AP = 0,

where the matrix A of size 2n f ×2(nv −2) consists of the equation coefficients and the vector P contains
the x and y coordinates of the mesh vertices. Each consecutive pair of rows A2t−1 and A2t for t = 1 . . . n f
defines a pair of equations (20) for a given triangle t. The minimization functional (Equation 21) has a
unique minimum if and only if the matrix AAT is of full rank. It is well known [Strang 1988] that AAT

has full rank if A is full rank, that is rank(A) = 2(nv − 2) (remember that n f ≥ nv − 2). We now prove
that A is indeed full rank. We first state the following observations:

— Observation 1. Each pair of per triangle equations (20) are independent (including rows refering
to triangles with one or two fixed vertices). Hence each pair of respective rows A2t−1 and A2t is
independent.

— Observation 2. Given any set of per triangle equations for triangles t1 . . . tm, if triangle tm contains
a vertex P which is not used by triangles t1 . . . tm−1, then the pair of equations defined for tm is
independent of the set of equations for t1 . . . tm−1. Hence the rows of A related to tm are independent
from the rows that correspond to t1 . . . tm−1.

To compute the rank of A, reorder its rows as follows. Since the fixed vertices Pnv−1 and Pnv share an
edge, there is a triangle that contains both Pnv−1 and Pnv . Compute a spanning tree of the facet graph,
using it as the root, and index the faces using a pre-order traversal of the tree. Now reorder the pairs
of rows in A that correspond to each triangle based on the indexing. We now compute the rank of A.

— The first two rows correspond to the root triangle which contains two fixed vertices. From
Observation 1, the two rows are independent, thus the first two rows of A are full rank. This triangle
contains one unfixed vertex.

— Each subsequent pair of rows defines a triangle which shares an edge with at least one triangle with
a smaller index. If the third vertex is not used in the rows above, then based on Observation 2, the

ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.



ABF++: Fast and Robust Angle Based Flattening • 329

pair of rows is independent from the previous rows. Since the mesh is connected, there is at least one
pair of equations that references each vertex for the first time.

Therefore, there are at least 2(nv − 2) rows which are independent. Hence, the rank of A is at least
2(nv − 2). Since this is the number of columns of A and n f ≥ nv − 2, then A is full rank.

Hence the minimization functional ((Equation 21) has a unique minimizer.
A set of angles αt

k computed on a planar triangulation defines the triangulation up to rotation and
global scaling. Hence given two fixed vertices Pnv and Pnv−1 , there exists a planar triangulation which
has those angles. Given the vertex coordinates P of this triangulation, it is easy to check that Ep(P ) = 0.
Hence, since the minimum is unique and the value of a quadratic functional is always nonnegative, the
minimization has the reproduction property.
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