Ray Tracing

Dr. Scott Schaefer

Ray Tracing

- Provides rendering method with
- Refraction/Transparent surfaces
- Reflective surfaces
- Shadows

Ray Tracing

- Provides rendering method with
- Refraction/Transparent surfaces
- Reflective surfaces
- Shadows

Ray Tracing

- Provides rendering method with
- Refraction/Transparent surfaces
- Reflective surfaces
- Shadows

Ray Tracing

- Provides rendering method with
- Refraction/Transparent surfaces
- Reflective surfaces
- Shadows

Essential Information for Ray Tracing

- Eye point
- Screen position/orientation
- Objects
- Material properties
-Reflection/Refraction coefficients
- Index of refraction
- Light sources

Recursive Ray Tracing

- For each pixel
- Intersect ray from eye through pixel with all objects in scene
- Find closest (positive) intersection to eye
- Compute lighting at intersection point
\bullet Recur for reflected and refracted rays (if necessary)

Ray Casting

■ Removes hidden surfaces
■ Per-pixel lighting computations

Shadows

- Cast a virtual ray to each light source
- If ray hits an opaque object before the light, then omit contribution of that light
- If ray hits a semi-transparent object, scale the contribution of that light and continue to look for intersections
■ Note: objects may be self-shadowing!!!

Shadows

$$
I=k_{a} A+\sum_{i} C_{i}\left(k_{d}\left(L_{i} \cdot N\right)+k_{s}\left(R_{i} \cdot E\right)^{n}\right)
$$

Shadows

$$
I=k_{a} A+\sum_{i} I f\left(\operatorname{shadow}, 0, C_{i}\left(k_{d}\left(L_{i} \cdot N\right)+k_{s}\left(R_{i} \cdot E\right)^{n}\right)\right)
$$

Reflection

- Mirror-like/Shiny objects

$$
R=2(V \cdot N) N-V
$$

Refraction

- Bending of light caused by different speeds of light in different medium
- Each (semi-)transparent object has an index of refraction n_{i} or phase velocity of light c_{i}
- Use Snell's law to find refracted vector

Snell's Law

$c=$ speed of light in vacuum

Snell's Law

Snell's Law

Snell's Law

$$
R=\cos \left(\theta_{2}\right)(-N)+\sin \left(\theta_{2}\right)\left(\frac{(V \cdot N) N-V}{\left|V_{\perp}\right|}\right)
$$

Snell's Law

$$
R=\cos \left(\theta_{2}\right)(-N)+\sin \left(\theta_{2}\right)\left(\frac{(V \cdot N) N-V}{\sin \left(\theta_{1}\right)}\right)
$$

Snell's Law

$$
R=\cos \left(\theta_{2}\right)(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
$$

Snell's Law

$$
R=\sqrt{1-\sin \left(\theta_{2}\right)^{2}}(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
$$

Snell's Law

$$
\begin{gathered}
\text { Surface } \\
R=\sqrt{1-\sin \left(\theta_{1}\right)^{2} \frac{c_{2}{ }^{2}}{c_{1}^{2}}}(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
\end{gathered}
$$

Snell's Law

$$
R=\sqrt{c_{1}^{2}-c_{2}^{2} \sin \left(\theta_{1}\right)^{2}} \frac{1}{c_{1}}(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
$$

Snell's Law

$$
R=\sqrt{c_{1}^{2}-c_{2}^{2}\left(1-(V \cdot N)^{2}\right)} \frac{1}{c_{1}}(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
$$

Total Internal Reflection

$$
R=\sqrt{\frac{c_{1}^{2}-c_{2}^{2}\left(1-(V \cdot N)^{2}\right)}{c_{1}}} \frac{1}{c_{2}}(-N)+\frac{c_{2}}{c_{1}}((V \cdot N) N-V)
$$

Recursive Ray Tracing

$$
\begin{aligned}
& I=I_{\text {direct }}+\gamma_{e} I_{\text {reflected }}+\gamma_{a} I_{\text {refracted }} \\
& I_{\text {direct }}=I_{\text {ambient }}+I_{\text {diffuse }}+I_{\text {specular }}
\end{aligned}
$$

Recursive Ray Tracing

- Recur for reflective/transparent objects

Recursive Ray Tracing

- Recur for reflective/transparent objects

Optimizations

- Lots of rays to cast!

■ Ray-Surface intersections are expensive

- Associate with each object
- Bounding box in 3-space

■ If ray doesn't intersect box, then ray doesn't intersect object

Parallel Processing

- Ray tracing is a trivially parallel algorithm!
- Cast rays in parallel
- Cast reflection, refraction, shadow rays in parallel
- Calculate ray/surface intersections independently in parallel

Ray Tracing: Special Effects

copyright Newline Cinema

Ray Tracing: Video Games

Ray Tracing: Massive Models

Extensions of Ray Tracing

- Only considers totally specular interactions
- rays either reflect perfectly or refract perfectly
- Ray traced scenes don't show "color bleed"

