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Backface Culling 
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Backface Culling 
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Backface Culling 

 Advantages 

 Improves rendering speed by removing 

roughly half of polygons from scan 

conversion 

 Disadvantages 

Assumes closed surface with consistently 

oriented polygons 

NOT a true hidden surface algorithm!!! 
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Backface Culling 

 Is this all we have to do?  
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Backface Culling 

 Is this all we have to do? No! 

- Can still have 2 (or more) front faces that map to 

the same screen pixel 
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Backface Culling 

 Is this all we have to do? No! 

- Can still have 2 (or more) front faces that map to 

the same screen pixel 

- Which actually gets drawn? 
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Painter’s Algorithm 

 Sort polygons according to distance from 

viewer 

 Draw from back to front 

 

 How do we sort polygons? 
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Painter’s Example 

z = 0.7 

z = 0.3 

z = 0.1 

Sort by depth: 
Green rect 

Red circle 

Blue tri 

z = 0 
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Painter’s Algorithm 
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 Sometimes there is NO ordering that 

produces correct results!!! 

Painter’s Algorithm 
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Painter’s Algorithm 

1. Sort all objects’ zmin and zmax 
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Painter’s Algorithm 

1. Sort all objects’ zmin and zmax 

2. If an object is uninterrupted (its zmin and zmax are 

adjacent in the sorted list), it is fine 
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Painter’s Algorithm 

1. Sort all objects’ zmin and zmax 

2. If an object is uninterrupted (its zmin and zmax are 

adjacent in the sorted list), it is fine 

3. If 2 objects DO overlap 

 3.1 Check if they overlap in x 

  - If not, they are fine 

 3.2 Check if they overlap in y 

  - If not, they are fine 

  - If yes, need to split one 
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Painter’s Algorithm 

 The splitting step is the tough one 

 - Need to find a plane to split one polygon by so 

that each new polygon is entirely in front of or 

entirely behind the other 

 - Polygons may actually intersect, so then need to 

split each polygon by the other 
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Painter’s Algorithm 

 The splitting step is the tough one 

 - Need to find a plane to split one polygon by so 

that each new polygon is entirely in front of or 

entirely behind the other 

 - Polygons may actually intersect, so then need to 

split each polygon by the other 

 After splitting, you can resort the list and 

should be fine 
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Painter’s Algorithm-Summary 

 Advantages 

Simple algorithm for ordering polygons 

 Disadvantages 

Sorting criteria difficult to produce 

Redraws same pixel many times 

Sorting can also be expensive 
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Depth (“Z”) Buffer 

 Simple modification to scan-conversion 

 Maintain a separate buffer storing the closest 

“z” value for each pixel 

 Only draw pixel if depth value is closer than 

stored “z” value 

Update buffer with closest depth value 
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Depth (“Z”) Buffer 

 Advantages 

Simple to implement 

Allows for a streaming approach to 

polygon drawing 

 Disadvantages 

Requires extra storage space 

Still lots of overdraw 
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Binary Space Partitioning Trees 

 BSP tree: organize all of space (hence 

partition) into a binary tree 
- Preprocess: overlay a binary tree on objects in the scene 

- Runtime: correctly traversing this tree enumerates objects 

from back to front 

- Idea: divide space recursively into half-spaces by choosing 

splitting planes 

 Splitting planes can be arbitrarily oriented 
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BSP Trees: Objects 
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BSP Trees: Objects 

1 2 3 

4 
5 

6 7 
8 

9 

8 6 5 6 

1 

3 
2 

2 4 

Put front objects in the left branch 

7 9 

- + 

- + - + 

+ + - + - - 

+ - + - 

When to stop the recursion? 
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Object Splitting 

 No bunnies were harmed in my example 

 But what if a splitting plane passes through 

an object? 
- Split the object; give half to each node: 

- Worst case: can create up to O(n3) objects! 

Ouch 
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Building a BSP Tree 

 Choose a splitting polygon 

 Sort all other polygons as 

 Front 

 Behind 

 Crossing 

 On 

 Add “front” polygons to front child, “behind” to 
back child 

 Split “crossing” polygons with infinite plane 

 Add “on” polygons to root 

 Recur 
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Building a BSP Tree 
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Rendering with a BSP Tree 

 If eye is in front of plane 

 Draw “back” polygons 

 Draw “on” polygons 

 Draw “front” polygons 

 If eye is behind plane 

 Draw “front” polygons 

 Draw “on” polygons 

 Draw “back” polygons 

 Else eye is on plane 

 Draw “front” polygons 

 Draw “back” polygons 
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BSP Trees: Objects 
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Correctly traversing this tree enumerates objects from back to front 
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BSP Trees: Objects 

1 2 3 

4 
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6 7 
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9 

8 6 5 6 
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3 
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2 4 

Correctly traversing this tree enumerates objects from back to front 

    

7 9 

- + 

- + - + 

+ + - + - - 

+ - + - 

Traversal order: 

8->9->7->6->5->3->4->2->1 
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Building a BSP Tree 
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Building a BSP Tree 
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Rendering with a BSP Tree 

 Advantages 

 No depth comparisons needed 

 Polygons split and ordered automatically 

 Disadvantages 

 Computationally intense preprocess stage 

restricts algorithm to static scenes 

 Splitting increases polygon count 

 Redraws same pixel many times 

 Choosing splitting plane not an exact science 
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Improved BSP Rendering 

 Take advantage of view direction to cull 

away polygons behind viewer 
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Improved BSP Rendering 

 Take advantage of view direction to cull 

away polygons behind viewer 

View frustum 
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Improved BSP Rendering 

 Take advantage of view direction to cull 

away polygons behind viewer 



62/62 

OpenGL and Hidden Surfaces 

glEnable(GL_DEPTH_TEST); 

glEnable(GL_CULL_FACE); 

 

glClear(GL_COLOR_BUFFER_BIT | 

GL_DEPTH_BUFFER_BIT ); 

glCullFace ( GL_BACK ); 
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Scan Line Algorithm 

 Assume for each line of screen, we have 

scan-lines for all polygons intersecting that 

line 

 For each polygon, keep track of extents of 

scan line 

 Whenever the x-extents of two scan lines 

overlap, determine ordering of two polygons 
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Scan Line Algorithm 
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Scan Line Algorithm 
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Scan Line Algorithm 
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Scan Line Algorithm 

 Advantages 

Takes advantage of coherence resulting in 
fast algorithm 

Does not require as much storage as depth 
buffer 

 Disadvantages 

More complex algorithm 

Requires all polygons sent to GPU before 
drawing 


