
1

Dr. Scott Schaefer

Hidden Surfaces

2/62

Hidden Surfaces

3/62

Hidden Surfaces

4/62

Hidden Surfaces

5/62

Backface Culling

6/62

Backface Culling

view direction

v

7/62

Backface Culling

view direction

n

v

8/62

Backface Culling

view direction

n

v

0vn , draw polygon

9/62

Backface Culling

view direction

n

v

0vn , cull polygon

10/62

Backface Culling

11/62

Backface Culling

 1

2

3

counter clock-wise

orientation, draw polygon

12/62

Backface Culling

 1

2

3

clock-wise orientation,

cull polygon

13/62

Backface Culling

 Advantages

 Improves rendering speed by removing

roughly half of polygons from scan

conversion

 Disadvantages

Assumes closed surface with consistently

oriented polygons

NOT a true hidden surface algorithm!!!

14/62

Backface Culling

 Is this all we have to do?

15/62

Backface Culling

 Is this all we have to do? No!

- Can still have 2 (or more) front faces that map to

the same screen pixel

16/62

Backface Culling

 Is this all we have to do? No!

- Can still have 2 (or more) front faces that map to

the same screen pixel

- Which actually gets drawn?

17/62

Painter’s Algorithm

 Sort polygons according to distance from

viewer

 Draw from back to front

 How do we sort polygons?

18/62

Painter’s Example

z = 0.7

z = 0.3

z = 0.1

Sort by depth:
Green rect

Red circle

Blue tri

z = 0

19/62

Painter’s Algorithm

20/62

 Sometimes there is NO ordering that

produces correct results!!!

Painter’s Algorithm

21/62

Painter’s Algorithm

1. Sort all objects’ zmin and zmax

22/62

Painter’s Algorithm

1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and zmax are

adjacent in the sorted list), it is fine

23/62

Painter’s Algorithm

1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and zmax are

adjacent in the sorted list), it is fine

3. If 2 objects DO overlap

 3.1 Check if they overlap in x

 - If not, they are fine

 3.2 Check if they overlap in y

 - If not, they are fine

 - If yes, need to split one

24/62

Painter’s Algorithm

 The splitting step is the tough one

 - Need to find a plane to split one polygon by so

that each new polygon is entirely in front of or

entirely behind the other

 - Polygons may actually intersect, so then need to

split each polygon by the other

25/62

Painter’s Algorithm

 The splitting step is the tough one

 - Need to find a plane to split one polygon by so

that each new polygon is entirely in front of or

entirely behind the other

 - Polygons may actually intersect, so then need to

split each polygon by the other

 After splitting, you can resort the list and

should be fine

26/62

Painter’s Algorithm-Summary

 Advantages

Simple algorithm for ordering polygons

 Disadvantages

Sorting criteria difficult to produce

Redraws same pixel many times

Sorting can also be expensive

27/62

Depth (“Z”) Buffer

 Simple modification to scan-conversion

 Maintain a separate buffer storing the closest

“z” value for each pixel

 Only draw pixel if depth value is closer than

stored “z” value

Update buffer with closest depth value

28/62

Depth (“Z”) Buffer

 Advantages

Simple to implement

Allows for a streaming approach to

polygon drawing

 Disadvantages

Requires extra storage space

Still lots of overdraw

29/62

Binary Space Partitioning Trees

 BSP tree: organize all of space (hence

partition) into a binary tree
- Preprocess: overlay a binary tree on objects in the scene

- Runtime: correctly traversing this tree enumerates objects

from back to front

- Idea: divide space recursively into half-spaces by choosing

splitting planes

 Splitting planes can be arbitrarily oriented

30/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

31/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

+

-

32/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

9 8 5 6 1 4 2 3

Put front objects in the left branch

7
+

-

- +

33/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

9 8 5 6 1 4 2 3

Put front objects in the left branch

7

- +

- + - +

34/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

8 9 5 6

1

3 2 4

Put front objects in the left branch

7

- +

- + - +

- + - + - +

35/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

8 6 5 6

1

3
2

2 4

Put front objects in the left branch

7 9

- +

- + - +

+ + - + - -

+ - + -

36/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

8 6 5 6

1

3
2

2 4

Put front objects in the left branch

7 9

- +

- + - +

+ + - + - -

+ - + -

When to stop the recursion?

37/62

Object Splitting

 No bunnies were harmed in my example

 But what if a splitting plane passes through

an object?
- Split the object; give half to each node:

- Worst case: can create up to O(n3) objects!

Ouch

38/62

Building a BSP Tree

 Choose a splitting polygon

 Sort all other polygons as

 Front

 Behind

 Crossing

 On

 Add “front” polygons to front child, “behind” to
back child

 Split “crossing” polygons with infinite plane

 Add “on” polygons to root

 Recur

39/62

Building a BSP Tree

1 2

3

4

5

6

7

40/62

Building a BSP Tree

1 2

3

4

5

6

7

2,3,4,5,6,7

1

b

41/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

3

7-2,6, 5-2

1

b

b f

2,4,5-1,7-1

42/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2 4, 5-1

3

7-1
7-2,6, 5-2

1

b

b

b

f

f

43/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

5-1

3

7-1

4 7-2,6, 5-2

1

b

b

b

b

f

f

44/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

5-1

3

7-1

4 7-2,6, 5-2

1

b

b

b

b

f

f

45/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

5-1

3

7-1

4 7-2,6, 5-2

1

b

b

b

b

f

f

46/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

7-2

5-1

3

7-1

4
6, 5-2

1

b b

b

b

b

f

f

47/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

5-2

2

7-2

5-1

3

7-1

4 6

1

b b

b b

b

b

f

f

48/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b

49/62

2

7-2

Building a BSP Tree

1 2

3

4

6

5-1

3

7-1

4 6

1

7-2

7-1

5-2

5-1

b b

b

b

b

f

f

5-2

b

50/62

Rendering with a BSP Tree

 If eye is in front of plane

 Draw “back” polygons

 Draw “on” polygons

 Draw “front” polygons

 If eye is behind plane

 Draw “front” polygons

 Draw “on” polygons

 Draw “back” polygons

 Else eye is on plane

 Draw “front” polygons

 Draw “back” polygons

51/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

8 6 5 6

1

3
2

2 4

Correctly traversing this tree enumerates objects from back to front

7 9

- +

- + - +

+ + - + - -

+ - + -

Traversal order?

52/62

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

8 6 5 6

1

3
2

2 4

Correctly traversing this tree enumerates objects from back to front

7 9

- +

- + - +

+ + - + - -

+ - + -

Traversal order:

8->9->7->6->5->3->4->2->1

53/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

Traversal order: 2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b

54/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

Traversal order:

6->(5-2)->(7-2)->3->(5-1)->4->(7-1)->2->1

2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b

55/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

Traversal order:

2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b

56/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b Traversal order:

1->2->(7-1)->4->(5-1)->3->(7-2)->(5-2)->6

57/62

Building a BSP Tree

1 2

3

4

6

7-2

7-1

5-2

5-1

Traversal order?

2

7-2

5-1

3

7-1

4 6

1

b b

b

b

b

f

f

5-2

b

58/62

Rendering with a BSP Tree

 Advantages

 No depth comparisons needed

 Polygons split and ordered automatically

 Disadvantages

 Computationally intense preprocess stage

restricts algorithm to static scenes

 Splitting increases polygon count

 Redraws same pixel many times

 Choosing splitting plane not an exact science

59/62

Improved BSP Rendering

 Take advantage of view direction to cull

away polygons behind viewer

60/62

Improved BSP Rendering

 Take advantage of view direction to cull

away polygons behind viewer

View frustum

61/62

Improved BSP Rendering

 Take advantage of view direction to cull

away polygons behind viewer

62/62

OpenGL and Hidden Surfaces

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

glCullFace (GL_BACK);

63/62

64/62

Scan Line Algorithm

 Assume for each line of screen, we have

scan-lines for all polygons intersecting that

line

 For each polygon, keep track of extents of

scan line

 Whenever the x-extents of two scan lines

overlap, determine ordering of two polygons

65/62

Scan Line Algorithm

66/62

Scan Line Algorithm

67/62

Scan Line Algorithm

68/62

Scan Line Algorithm

 Advantages

Takes advantage of coherence resulting in
fast algorithm

Does not require as much storage as depth
buffer

 Disadvantages

More complex algorithm

Requires all polygons sent to GPU before
drawing

